《乘法分配律》教案

时间:2025-10-29 08:58:01 教案 我要投稿

《乘法分配律》教案(汇编15篇)

  作为一位兢兢业业的人民教师,编写教案是必不可少的,借助教案可以有效提升自己的教学能力。那么写教案需要注意哪些问题呢?以下是小编帮大家整理的《乘法分配律》教案,仅供参考,希望能够帮助到大家。

《乘法分配律》教案(汇编15篇)

《乘法分配律》教案1

  教学目标

  1.引导学生探究和理解乘法分配律。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:借助实际问题体会、认识乘法乘法律。

  教学难点:用乘法交换律和结合律算式。

  预设过程

  一、引入

  1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?

  2、理解题意

  二、探新

  1、学生独自列式

  2、小组交流想法

  3、汇报:根据学生的回答板书

  25×(4+9)=25×4+25×9=325

  25×(4+9)=25×4+25×9

  指名学生说出每一步表示的意义

  (4+9)×25=4×25+9×25=325

  (4+9)×25=4×25+9×25

  4、改题:如果改为买45副,你又可以怎样算?

  45×(4+9)=45×4+45×9

  (4+9)×45=4×45+9×45

  5、观察:请你们仔细观察上面这几题,

  6、你们发现了什么?

  相同点:左边都是两个数的和与一个数相乘,

  右边都是两个数和这个数相乘再相加。

  不同点:算式左边和右边有什么不同?

  联系:算式左边和算式右边有什么联系?

  6、举例:这样的算式你能再举出一些吗?

  7、概括:你们能把上面的规律概括成一句话吗?

  两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  你能用字母表示吗?(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  8、质疑:还有什么问题?

  三、巩固

  1、做一做

  判断并说明理由

  2、第5题:下面哪些算式运用了乘法分配律

  3、第6题

  103×1220×5524×20525×24

  四、:你们还有什么问题?

  五、布置作业:

  1、口算

  2、作业本

  3、寻找生活中乘法分配律的例子。

  板书设计

  作业设计:

  课堂作业本P15

  口算训练P16

  教学反思

  课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。

  在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的.情境比较清晰,学生列出算式后再让学生说一说,

  生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。

  生2:是呀,一个数好像是公共财产,都是它们共有的。

  这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。

《乘法分配律》教案2

  第一课时

  教学目标:

  1、使学生在解决实际问题的过程中发现并理解乘法分配律。

  2、使学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3、渗透从特殊到一般,再有一般到特殊这种认识事物的方法,使学生增强学习的兴趣和自信。

  教学重点、难点:

  引导学生发现和理解乘法分配律。

  教学资源:

  小卡片、计算器、多媒体课件、实物投影仪。

  教学过程:

  一、创设情境

  1、同学们,我们已经学过了哪些运算律?今天,我们继续来探究发现有关乘法的新知识。板:乘法

  2、电脑出示例题图:

  二、活动尝试

  1、从题中你获得了哪些信息?白菜老师要我们解决什么问题?

  2、你们会列综合算式解答吗?(学生各自独立计算)

  3、交流反馈:谁来说说你是怎样做的?你是怎样想的?还有不同的解法吗?

  65×5+45×5 (65+45)×5

  =325+225 =110×5

  =550(元) =550(元)

  答:一共要付550元。

  三、探索规律

  1、师:从这里我们又一次感受到,解决同一个问题,咱们思考的角度与方法可以是多种多样的。这两种解法算式虽然不一样,但结果---(相等)。

  2、那你会把这两道算式写成一个等式吗?

  板:(65+45)×5= 65×5+45×5

  3、师:如果这位阿姨买了3件短袖衫和3条裤子,一共要付多少钱?怎么列式?

  板:(32+45)×3 32×3+45×3

  你能猜猜这两个算式的结果有没有什么关系?可以怎样检验?

  板:(32+45)×3=32×3+45×3

  4、出示:(13+10)×2=?

  你能口算出它的.得数吗?你是怎样算的?谁能大胆猜想这个算式还可以怎样计算?怎样检验?

  师:通过算一算可以检验算式是否正确。

  5、请你小声读读上面三个等式,有什么发现?

  6、同学们,刚才你们用这里的三个等式得出了结论,你们所发现的这个结论也许只是一种偶然现象,是一种猜想而已。你们想不想自己出题来验证?

  板:猜想验证

  7、学生任意地写着算式,进行着计算。

  8、汇报自己验证的结果。

  教师结合学生回答板书这些例子:……

  9、问:这样的等式能写完吗?你能用字母来表示这个规律吗?

  生异口同声:(a+b)×c=a×c+b×c

  10、师:用字母表示乘法中的这个规律,感觉怎样——(稍等)简洁、明了。这就是数学的美。

  11、师:任何事物都可以从正反两方面去看,请你们反着读一读字母式子。

  12、师:同学们,你们发现的这个规律叫乘法分配律,用字母表示就是----(学生齐说),你们能用自己的语言描述这个规律吗?请你们同桌互相说一说。(电脑出示乘法分配律)

  13、师:乘法分配律是一个很重要的知识,运用广泛,甚至到了中学也要用到,所以我们一定要学好。下面我们就来运用这个规律完成一些练习。板:应用

  四、应用规律

  1、想想做做第1题。

  让学生填空后结合等式两边算式的特点说说自己的思考过程。

  2、根据乘法分配律判断下面各题是否正确,并说明理由。

  (40+3)×25=40×25+3×25()

  15×9+45×9=(15+45)×9()

  25×21=25×20+25()

  40×50+50×90=40×(50+90) ( )

  5×(20+6)=5×20+6 ( )

  3、选择。(请用手势表示正确答案的编号。)

  下面与25×(4×8)相等的算式是( )。

  ①25×4+25×8;

  ②25×4×25×8;

  ③25×4×8

  五、总结拓展

  1、请同学们回忆一下,这节课学习了什么?我们是怎么学的?这种学习方法你们有没有学会了?课后请你们用这种方法去研究一下除法中有没有这样的规律?

  板书设计:

  乘法分配律

  猜想---验证---归纳---应用

  (65+45)×5 = 65×5+45×5

  (32+45)×3 = 32×4+45×3

  (13+10)×2=13×2+10×2

  ……

  (a+b)×c = a×c+b×c

  先和先两个积

《乘法分配律》教案3

  教学目标:

  1、使学生在探究的过程中,能自主发觉乘法安排律,并能用字母表示。

  2、通过视察、分析、比较,培育学生的分析、推理和概括实力。

  3、发挥学生主体作用,体验探究学习的欢乐。

  教学重点:

  指导学生探究乘法的安排律。 教学难点:

  乘法安排律的应用。

  教学打算:

  课件、口算题、例题、练习题等。 教学策略:

  本节课的学习我主要实行自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、英勇地体验尝试和实践活动来进行综合学习。

  教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。

  谁来说一说,驾驭乘法结合律和乘法交换率有什么作用?

  生:可以使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速推断。(生口算。)

  设计意图:这样开宗明义的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。

  二、探究发觉

  1、猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎么不如刚才的快啊?

  生:它和前面的题目不一样。 师:好,我们来看一下它与前面的题目有什么不同?

  生:前面的题都是乘号,这道题既有乘号还有加号。 生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。 师:为什么这样算哪?

  生:我是依据乘法安排律算的。 师:你是怎么知道的?你知道什么是乘法安排律吗?

  生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

  师:你自学实力很强,但对乘法安排律的内涵还不了解,这节课我们就来探究乘法安排律好吗?(板书课题:乘法安排律。)

  2、验证。

  师:同学们看两个数的和同一个数相乘,假如可以这样计算的话,那可简便多了。究竟能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发觉。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。) 小结:通过验证,这道题的确可以这样算,那是不是全部的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是全部的两个数的和同一个数相乘都可以这样计算?

  师:由于时间关系,老师就写到这里,通过举例我们可以发觉,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们视察黑板上的几组等式,看看你们得到的结论是什么? 3、结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。 师:同学们真聪慧,你们知道吗?这就是乘法的第三个运算定律“乘法安排律”。(出示课件,学生齐读安排律的意义。)

  师:假如老师用a、b、c表示两个加数和乘数,你能用字母表示乘法安排律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法安排律,的确可以使一些计算简便。接下来,我们利用乘法安排律计算几道题。 设计意图:在探究乘法安排律的过程中,让学生经验了一次严密的科学发觉过程:猜想——验证——结论。为学生的可持续学习奠定了基础。

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法安排律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法安排律,看到乘法安排律,你们能联想到什么呢?(两个数的'差,同一个数相除都可以应用这样的方法。)

  反思:

  本课的学习要使学生理解和驾驭乘法安排律,并能正确地进行表述。让学生参加学问的形成过程,培育学生概括、分析、推理的实力,并渗透从特别到一般,再由一般到特别的相识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

  一、主动探究,实现亲身经验和体验

  现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发觉的过程,是在详细的情境中整个身心投入到学习活动,去经验和体验学问形成的过程,也是身心多方面须要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特别的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最终由学生通过视察、探讨、发觉、归纳总结出乘法安排律。整个过程中,我不是把规律干脆呈现在学生面前,而是让学生通过自主探究去感悟发觉,使主体性得到了充分发挥。在这个探究过程中,学生经验了一次严密的科学发觉过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。

  二、多向互动,注意合作与沟通

  在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,老师在本课教学中立足通过师生多向互动,特殊是通过学生与学生之间的相互启发与补充,来培育他们的合作意识,实现对“乘法安排律”这一运算定律的主动建构。学生对“乘法安排律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验胜利的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。

《乘法分配律》教案4

  教学目标:1、透过经历探索乘法分配律的活动,发现并理解乘法分配律。

  2、透过观察、分析、比较,培养学生初步的分析、推理、抽象概括潜力。

  3、渗透“从特殊到一般”的数学思想和方法。

  教学重点:指导探索乘法分配律。

  教学难点:发现并归纳乘法分配律。

  教 具: 课 件

  教学过程:

  一、创设情境,生成问题。

  师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?期望这天透过我们的努力,能有新的发现。

  出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?

  师:你能用几种方法解答?

  生1:(72+28)×2

  生2:72×2+28×2(板书两个算式)

  师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选取其中的一个算式计算一下。

  生计算。

  师:请选取第一个算式的同学,说出你的计算结果。

  生:长方形的周长是200米。

  师:谁选取的第二个算式,结果又是多少呢?

  生:我算的结果也是200米。

  师:透过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?

  生:能够出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?

  师:这道题你有能用几种方法解答?结果是多少?(生计算,汇报)

  生1:我列的算式是32×64+18×64,结果是6400元。 师:有没有用不一样的方法的?

  生2:我列的算式是:(32+18)×64,结果也是6400元。 师:两种不一样的方法,得出的结果却是相同,那这两个算式看来也是相等的。

  板书:(32+18)×64=32×64+18×32

  师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?

  生:可能有规律。

  师:真的有规律吗?

  【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不一样的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不一样思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】

  二、探索交流,归纳规律。

  师:刚才同学们感觉到这两个等式中内含规律,下方把你的想法在小组内交流一下吧。

  师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?

  生:不能。

  师:那该怎样办?

  生:找更多的这样的等式。

  师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。

  (生举例验证)

  汇报:

  生1:(3+2)×5=3×2+2×5

  师:你计算过了吗?

  生1:算了,两边的结果都是30。

  师:很好,其他同学还有吗?

  生2:(30+50)×5=30×5+50×5

  生3:(24+76)×2=24×2+76×2

  ……

  师:同学们都找到了这样的式子吗?

  生:是。

  师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,但是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够决定两个式子的结果是否相同?

  (生思考)

  生:老师,我能。

  师:你说说看。

  生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果必须是相等的。

  师:同学们,你听明白了吗?

  生:明白了。

  师:那你能用这个思路说说你举得例子吗?

  生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4

  ……

  师:此刻我们再来思考,有没有可能像这样的式子两边不相等?

  生:不可能,两边的结果必须相等。

  【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生带给具有挑战性的研究机会:“请你再举出一些贴合自我心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想潜力,又培养了学生验证猜想的潜力。学生透过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】

  师:这么看来,同学们猜测的那个规律是真的存在,你能用自我的方式表示出你认为的规律吗?

  生1:(我+你)×他=我×他+你×他 ,我和你都是他的好朋友,也就是我是他的朋友,你也是他的朋友。

  生2:(爸爸+妈妈)×我=爸爸×我+妈妈×我。

  生3:(A+B)×C=A×C+B×C

  生4、(a+b)×c=a×b+a×c

  生5、(○+□)×◎=○×◎+□×◎

  师:同学们真了不起,透过努力验证了这个规律,你觉得用那一种表示这个规律更好一些?

  生:第三个用小写字母的那一个。

  师:你为什么觉得这个好?

  生:这样简单好记,而且前面学的交换律和结合律也是用字母表示的。

  师:我也同意你的观点,这就是咱们数学的简洁美的体现。这个规律就是乘法的分配律。读一读这个式子。

  (透过读式子,完善语言表达)

  【评析:教师对于乘法分配律的教学,教师不是把重点放在数学语言的表达上,而是把重点放在让学生在多个算式的计算中去完整地感知,透过观察、比较和归纳,大胆用自我喜欢的方式表示出来……。学生经过这样的探究活动,才能建构对自我有好处的知识,用语言表达乘法分配律也就水到渠成】

  三、巩固应用,内化提高

  1、火眼金睛,判对错。

  56×(19+28)=56×19+28

  64×64+36×64=(64+36)×64

  32×(3×7)=32×7+32×3

  2、思维敏捷,连一连。(把结果相同的两个式子连起来) ①(42+25+33)×26 ①20×25+4×25

  ②36×15-26×15 ②(66+34)×66

  ③66×66+66×34 ③42×26+25×26+33×26

  ④38×99+38×1 ④(36-26)×15

  ⑤(20+4)×25 ⑤38×(99+1)

  师:相等的式子我们都找到了,请你选取其中的一组计算出它们的结果。

  生1、我算的.是(20+4)×5=20×25+4×25,结果是600。 师:你是把两边的式子都计算了吗?

  生1:没有,我是算的右边的那个式子。

  师:你为什么没用左边的式子计算呢?

  生1:右边的那个式子计算起来简单。

  师:看来乘法分配律还能够用来简便计算,提高我们的计算速度。

  生2:我算的是38×99+38=38×(99+1),结果是3800,我算的是右边的那个式子,右边的括号里是100,38×100好算。 师:大家来观察这个式子,这是我们发现的那个乘法分配律吗?

  生1:不是。

  生2:是,就是把它给倒过来用的。

  师:是的,这是乘法分配律的逆应用,也能够用来简化计算。

  生3:我算的是36×15-26×15=(36-26)×15,结果是150,是透过右边的式子计算出来的,那样简便。

  师:看了这个等式,你有什么想说的?

  生:我们刚才做的都是带“+”的,但是这个是“-”。 师:看来我们的乘法分配律还有新的内涵呢。 补充板书:(a-b)×c=a×c-b×c

  师:有没有计算(42+25+33)×26=42×26+25×26+33×26这个等式的?

  生4:我算了,结果是2600,算的是左边的那个式子。 师:看了它,你有没有想说的?

  生:刚才我们做的都是两个数的和与一个数相乘,这个题是三个数的和与一个数相乘。

  师:如果是4个、5个数、更多数的和与一个数相乘,还能用分配律吗?

  生:能。

  3、合理选取,算一算。

  312×12+188×12

  101×87

  (53+47)×23

  【评析:练习题的设计综合性、层次性强,个性是第2题设计的十分巧妙,既对乘法分配律的基本形式进行了练习,又对乘法分配律能够使计算简便和乘法分配律的拓展形式,让学生有了初步感知,把学生引入更广阔的数学探索空间。让学生体验到数学知识内在的魅力,培养了学生的数学学习兴趣。】

  四、拓展延伸,引发思考。

  这节课我们共同来研究了乘法分配律,除法有没有分配律呢?

  板书:(a+b)÷c=a÷c+b÷c ?

  同学们能够课后用我们这天研究乘法分配律的方法进行验证,总结。

  【总评:乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是学生较难理解和叙述的定律。在本节课教学设计上教师注重了从学生的实际出发,把数学知识和实际生活紧密联系起来,让学生在不断的感悟和体验中学习知识。注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,透过让学生用两种不一样的方法解决实际问题,在两个不一样的算式之间建立起联系,让学生初步感知乘法分配律。之后,给学生带给体验感悟的空间,让学生写出贴合规律的式子,引导学生在研究讨论中,进一步构成清晰的表象。在此基础上,让学生自我再写出一些贴合乘法分配律的等式,既为概括乘法分配律带给更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的构成过程,有利于学生改善学习方式。让学生亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅仅发现乘法分配律的知识,而且学习到了科学探究的方法,数学思维潜力得到了发展。】

《乘法分配律》教案5

  教学目标:

  1、知识:经历发现归纳乘法分配律的过程,理解和掌握乘法分配律;初步感受运用乘法分配律能进行一些简算。

  2、技能:培养学生观察、分析、综合、抽象、概括能力。

  3、情感:通过情境创设,激发学生数学学习的兴趣,培养学生自主参与意识,主动探究精神,同学间合作交流的态度,并能获得成功的体验。

  教学过程:

  一、创设情境,激趣导入。

  (1)师:同学们,你们去过苏果超市吗?你们去过森林超市吗?想不想去看一看?小熊开了一家森林超市,它想干什么呢!我们一起来看一看:

  [呈现画面:①森林超市 ②招聘广告]

  (2)师:小兔、小猪看到广告后,前来应聘。

  [呈现画面③]

  (3)师:小熊决定进行考试,择优录取。小熊还想邀请同学们一起参加这个活动,你们愿意吗?

  1、第一轮比赛开始了:森林俱乐部准备召开小动物运动会在本超市购买了

  [呈现题一]:④ □□□□ □□□□

  每副15元 每个3元

  ①小猪和小兔都很快算出了结果,你知道,它们是怎么算得吗?

  汇报生成:15×4+3×4 (15+3)×4交互呈现算式

  =60×12 =18×4

  =72(元) =72(元)

  这是小猪算出的结果,小白兔说:我和它算得方法不一样,你们知道,它是怎么算的?(点另一种方法)

  ②仔细观察这两道算式,你有什么发现?(左右两边的算法不同,但得数相同)

  ③每种算法,先算什么?再算什么?结果怎样?结果相等,我们可以怎样连接这两个算式?

  ④板书:(15+3)×4=15×4+3×4

  (4)师:第一轮比赛小兔、小猪表现的.怎么样?

  2、第二轮开始,请听题:

  [呈现题二]森林俱乐部为裁判员买了5套运动服(小熊读题,大家理解题意)

  品名

  单价

  数量

  上衣

  55元

  5套

  裤子

  45元

  请你算算,一共花了多少钱?

  ①小熊题目刚讲完,小兔一口报出了它的结果,小猪却算了解很长时间,同学们,你知道小兔是怎样算的吗?它为什么算的那么快?

  小猪委屈地说,其实这种方法我也算出来了,我还用了另一种方法在算了呢?另一种方法是什么呢?

  汇报生成:小猴:(55+45)×5 小猪:55×5+45×5

  =100×5 =275+225

  =500(元) =500(元)

  ②仔细观察这两个算式,你又有什么发现?(计算方法不同,结果相等)

  ③这两个算式能不能用一个等号连接起来?

  板书:(49+51)×5=49×5+51×5

  3、下面举行第三场:请听题:(小熊读题)

  [呈现题三]

  小熊:森林俱乐部又买了8辆独轮车和8辆滑板车

  品名

  单价(元)

  数量(辆)

  独轮车

  50

  8

  滑板车

  125

  8

  一共花了多少元钱?

  ①这次可是小猪先抢答了结果,你知道它是怎么算的吗?小兔又是怎样算的?

  ②汇报生成:小猪50×8+125×8 小兔:(50+125)×8

  =400+1000 =175×8

  =1400(元) =1400(元)

  ③再次观察这两道算式,它们之间有什么联系?(相等)

  ④板书:(150+125)×8=50×8+125×8。

  4、同学们,小猪和小兔三次比赛的结果怎样?它们表现的都非常优秀,小熊决定同时录用它们,它们工作可认真啦!

  二、观察发现,总结规律。

  在小猪和小兔计算比赛的过程中,我们得到了三个等式:

  1、观察三个等式,每个等式都有几个数组合而成?(3个数)

  2、通过观察这几道等式从左边到右边,你能发现什么规律吗?(四人小组讨论交流,指名汇报)。

  3、是不是任何三个数组成这样的算式都具有这样的规律呢?

  (1)下面我们共同合作,验证一下

  谁能举出三个数。如:……

  两个数的和同一个数相乘怎么表示?

  谁能根据左边的算式,写出右边的算式

  请你分别算一算两个算式的结果相等吗?

  (2)下面请同座位合作来试一试:左边的同学任意找出三个数写出两个数的和同一个数相乘,右边的同学再写出对应的算式,再分别算出结果,看是不是相等。

  (3)指名两组汇报,并板书:……

  (4)同学们想说的很多,这样的例子能举得完吗?板书……

  4、同学们,刚才我们通过举例同样验证了……(师生共同叙述)这就是我们今天要研究的乘法分配律(板书课题)

  5、你会用自己喜欢的方法表示出乘法分配律吗?

  6、阅读课文:P88—89

《乘法分配律》教案6

  教学内容:

  教科书例6、例7及“做一做”,练习十四。

  (一)知识教学点

  1.使学生理解乘法分配律的意义。

  2.掌握乘法分配律的应用。

  (二)能力训练点

  通过观察、分析、比较,培养学生的分析、推理和概括能力。

  (三)德育渗进点

  通过乘法分配律的应用,激发学生的学习兴趣。

  (四)羹育渗遇点

  使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。

  指导学生观察、分析、讨论、实践,使学生感知乘法分配律。运用已有经验

  (D识迁移类推,通过合作学习,学会知识。

  1.教学重点:乘法分配律的意义及应用。

  2.教学难点:乘法分配律的反应用。

  小黑板(转板)、口算卡片、投影仪、投影片、红(白)方木块。

  (一)锚垫孕伏

  1.口算:(卡片)

  25× 17×4 125×24

  引导学生说一说运用了什么运算定律,这样计算有什么好处?

  2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)

  (6+4)×5 6×4+4×5

  (二)探究新知

  1.导人新课:

  前面我们已经学习了乘法的交换律、结合律,并且知道应用这些定律可使

  一些计算简便。今天这节课,我们再学习乘法的分配律。(板书课题)

  2.教学例5:

  (1)出示例5:

  (2)引导学生观察、讨论、交流。

  (3)教师引导学生观察两种算式,发现了什么?使学生懂得:

  ①两个算式相等。

  ②两个算式可用等号连接。

  学生答,教师板书:(18+7)×6=150

  18×6+7×6二150

  (]8+7)×6二18×6+7×6 .

  (4)教师出示:20×(15+9)

  20× 15+20×9=480

  20×(15+9)二20×15+20×9

  组织学生分组讨论,使学生明确:每组中算式所表示的意义。

  反馈练习:按题目要求,请你说出一个等式。(投影出示)

  (——+——)×——=——×——+——×——

  学生答,教师填写投影。

  (通过学生的观察、分析、实践,使学生初感乘法分配律的知识,填空题的发

  散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获捐

  达到水到渠成。)

  教师;像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:

  ①两个数的.和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘

  数和乘数的位置。)

  ②两个加数分别同一个数相乘再把两个积相加。

  ③等号左右两边两个算式相等。

  3.概括定律:

  通过学生观察比较,启发学生用数学语言概括乘法分配律的内容。让学生

  结合板书理解乘法分配律的概念,然后再引导学生回答其内容,加以巩固。

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)×4二——×4+——×4

  (62+12)×3=——×——+——×——

  教师:启发学生用字母表示乘法分配律的内容并指名板演,提示学生3个

  数可分别用o、b、c表示。然后,让学生说明算式的意义。这时,教师再提醒学

  生还有没有别的写法。通过教师引导学生答出a×b×c=a×(b×c)问学生根据是什么?(乘法交换律,或用相乘来解释)

  5.我们知道用乘法交换律和乘法结合律可以使一些计算比较简便。同学

  们观察我们练习的乘法结合律,在运算上有什么特点?

  使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加

  数分别同这个数相乘,再把两个积相加比较简便。

  6.教学例7:

  (1)出示例7:

  102×43

  =(100+2)×43

  =4300+86

  =4386

  想:把102看成(100+2),再用43分别去乘100和2,可以用口算

  用了乘法结合律。

  教师说明:熟练后第二步可以不写,画上虚线。

  (2)出示9×37+9×63

  ①组织同学讨论。

  ②组织同学阅读教科书第65页。

  ③启发学生明白了什么?

  (乘法分配律的应用,学生有些经验,再加上乘法交换律、结合律的学习,学

  生知识迁移类推,通过合作学习,能够自己学会新知。)

  (三)巩固发晨

  1.练习十四第1题。

  2.在横线上填上适当的数。

  (”(24+8)×125=一×一+一×一

  (2)25×(20+4)=25×——+25×——

  (3)45×9+55×9=(——+——)×——

  (4)8×27+73×8=8×(——+——)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相

  同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。

  3.把相等的算式用等号连接起来:

  (1)32×48+32×52 32×(48+52)

  (2)(24+8)×5 24×5+24×8

  (3)20×(17+15) 20×17+20×15

  (4)(40+28)×5 40×5+28

  (5)(10×125)×8 - 10×8+125× 8

  (6)4×(30+25) 4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选择题:

  (1)28×(42十29)与下面的( )相等

  ①28×42+28×29 ②(28+42)×(28+29)

  (2)与6×8—6×8相等的式子是( )

  (3)与(10+8+9)×5相等的式子是( )

  ①10×5+8×5+9×5 ②10+5×8+5×9

  5.练习十四第4题,投影出示。

  6,分组计算练习十四第3题。

  (四)课堂小结

  ③28×42×29

  今天学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分

  别与一个数相乘,再把两个积相加。

  练习十四第2题

《乘法分配律》教案7

  教学目标:

  1、借助画图的方式理解、掌握乘法分配律并会用字母表示。

  2、能够运用乘法分配律进行简便运算。

  3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。

  4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。

  教学重、难点:

  理解并掌握乘法分配律。难点是乘法分配律的推理及运用。

  教学过程:

  一、情境导入:

  出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?

  二、探究发现,归纳总结。

  (一)借助图形,感知模型。

  1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的.呢?

  请把想象的图画出来。交流学生作品后,出示

  60米 30米

  20米 《乘法分配律》教学设计

  原面积 增加的部分

  2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?

  评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。

  (二)借助图形,抽象模型。

  1、出示几何图形:用两种方法解决问题。

  60米 ( )米

  20米 《乘法分配律》教学设计

  原面积 增加的部分

  刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?

  2、交流:你想增加几米?怎样算?结论是什么?

  师相机板书。

  引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。

  3、出示图3,要求:先把自己猜测的数据填入下面的面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。

  ( )米 ( )米

  ( )米《乘法分配律》教学设计

  原面积 增加的部分

  4、交流:你是怎么猜测和验证的?结论是什么?

  教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a+b)×c=a×c+b×c

  讨论:这个规律在数学上叫——?(板书课题——乘法分配律)

  (三)借助图形,逆用模型。

  1、出示计算题:

  (50+6)×25、8×(25+125)、102×45学生独立计算,汇报反馈交流。

  引导学生展开想象,看着这些算式,结合刚才长方形的面积模型,你想到了什么?

  2、46×25+54×25、98×20+98×80

  请闭上眼睛想象一下两个长方形拼成一个大正方形的过程,教师大屏幕演示。

  (四)借助图形,拓展模型。

  1、采摘大棚,原来宽20米,长60米,扩大规模后,长增加30米,问:原面积比增加的面积多多少?

  你们能解决这个问题吗?试着算一算。

  反馈交流:说说你们是怎么解决的?

  我们可以把所求问题想象成是两个长方形,沿着宽重合,然后求出多余的部分就可以了。大屏幕演示。

  2、20×60-20×30=600与(60-30)×20=600我们发现,它们之间存在着什么样的关系呢?

  谁能用字母来表示这个新规律呢?

  师板书:(a-b)×c=a×c-b×c

  三、科学练习:

《乘法分配律》教案8

  教学目标

  知识与技能:通过情景创设,在解决实际问题的过程中充分调用学生已有的知识经验,进行知识迁移。学生在老师的引导下探究和归纳乘法交换律、结合律,理解乘法交换律、结合律的作用,了解运用运算定律可以进行一些简便运算。

  过程与方法:鼓励学生大胆猜想,并从中感悟科学验证的方法。感受数学与现实生活的联系,能用所学知识解决简单的实际问题。培养根据具体情况,选择适当算法的意识与能力,发展思维的灵活性。

  情感、态度和价值观:通过教学情景的创设和欣赏自然景色的美,向学生渗透环保教育。

  教学重难点

  教学重点

  探索发现乘法交换律、结合律,懂得运用所学知识进行简便计算。

  教学难点

  乘法分配律的应用。

  教学工具

  多媒体课件

  教学过程

  一、复习导入

  二、学习乘法交换律和乘法结合律

  1、学习例5。

  (1)出示例5

  (2)学生在练习本上独立解决问题。

  (3)引导学生对解决的问题进行汇报。

  4×25=100(人)

  25×4=100(人)

  两个算式有什么特点?

  你还能举出其他这样的例子吗?

  教师根据学生的举例进行板书。

  你们能给乘法的`这种规律起个名字吗?

  板书:交换两个因数的位置,积不变。这叫做乘法交换律。

  能试着用字母表示吗?

  学生汇报字母表示:a×b=b×a

  2、学习例6。

  (1)出示例6

  (2)学生在练习本上独立解决问题。

  教师巡视,适时指导。

  (25×5)×2 25×(5×2)

  =125×2 =10×25

  =250(桶) =250(桶)

  (3)引导学生对解决的问题进行汇报。

  两个算式有什么特点?

  你还能举出其他这样的例子吗?

  教师根据学生的举例进行板书。

  你们能给乘法的这种规律起个名字吗?

  板书:先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律。

  能试着用字母表示吗?

  学生汇报字母表示:(a×b) ×c=a× (b×c)

  (4)完成例6下面做一做的第一题。

  3、学习例7。

  (1)出示例7。

  (2)学生在练习本上独立解决问题。

  教师巡视,适时指导。

  (3)引导学生对解决的问题进行汇报。

  两个算式有什么特点?

  你还能举出其他这样的例子吗?

  教师根据学生的举例进行板书。

  你们能给乘法的这种规律起个名字吗?

  板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。

  能试着用字母表示吗?

  学生汇报字母表示:(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  (4)完成例7下面做一做的第一题。

  3、学习例8。

  (1)出示例8。

  (2)收集信息,明确条件问题

  (3)学生独立思考,尝试解决问题

  (4)读懂过程,感悟不同方法

  课后小结

  今天你有什么收获?

  课后习题

  1、运用乘法运算定律,在下面的横线上填上恰当的数。

  78×85×17=78×(_____×______)

  81×(43×32)=(_____×______)×32

  (28+25)×4= ×4+ ×4

  15×24+12×15= ×( + )

  6×47+6×53= ×( + )

  (13+ )×10= ×10+7×

  2、判断对错。

  (1)39×22-39×2=39×22-2 ( )

  (2)39×22-39×2=39×(22-2) ( )

  (3)39×28+39×72=39×28+72 ( )

  (4)39×28+39×72=39×(28+72) ( )

  (5)39×12=39×(12-2) ( )

  (6)39×12=39×(10+2) ( )

  板书

  交换两个因数的位置,积不变。这叫做乘法交换律。

  先把前两个数相乘,或者先把后两个数相乘,积不变。这叫做乘法结合律

《乘法分配律》教案9

  教学内容:人教社教材四年级下册P26页例7

  教学目标:

  1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。

  2、会应用乘法分配律,使某些运算简便。

  3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。

  教学重点:

  让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。

  教学难点:理解和掌握乘法分配律的推导过程。

  教学设计思路:

  1、通过买衣服的情境转入乘法分配律。

  2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。

  3、会用乘法分配律进行简单的计算。

  教学过程

  一、创设情境,生成问题

  1、生活引入,激发兴趣

  今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。

  出示:两件上衣(价格分别是100元、80元)

  两条裤子(价格分别是70元、50元)

  2、提出问题,独立思考

  出示:(1)一共有几种搭配方法?

  (2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。

  二、探索交流,建构规律

  1、生选择搭配方案并计算。

  2、组内研讨,并出示:

  (1)一共有几种搭配方案?

  (2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?

  3、汇报交流:

  (1)探讨第一种方案。

  师:哪一个同学想先来给项老师推荐他的方案?

  (预设学生回答:A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的.价钱×套数=总价。列式为:(100 70)×5

  B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100×5 70×5)

  (2)探讨第二种方案。

  (3)探讨第三种方案。

  (4)探讨第四种方案。

  教师板书:

  一套 ×套数 = 5件上衣 5条裤子

  (150 100)× 5 = 150×5 100×5

  (150 70)× 5 = 150×5 70×5

  (100 100)× 5 = 100×5 100×5

  (100 70)× 5 = 100×5 70×5

  4、生列举例子。

  (1)出示:活动要求

  A、写出三个这个的算式。

  B、交流:你怎么来说明你写的算式左右两边是相等的?

  (2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。

  5、用字母表示乘法分配律。

  问:谁能用一个算式表示全班所有同学的算式?

  6、学生归纳概括:乘法分配律的意义。

  三、巩固应用,训练提升

  1、在□里填上适当的数。

  (15 20)×12=□×12 □×12

  25×(4 9)=□×4 □×9

  8×(10 5)=□×□ □×□

  30×24=30×□ 30×□

  2、把左右两边相等的算式用线连接起来。

  48×12 52×12 15×18 26×18

  (15 18)×26 25×40 25×4

  25×(40 4) (48 52)×12

  14×(45-5) 11×4 25×4

  (11×25)×4 14×45-14×5

  四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?

《乘法分配律》教案10

  教学内容:

  教科书第69页例6,练习十四的第310题。

  教学目的:

  使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

  教具准备:

  复习中的题目写在小黑板上。

  教学过程 :

  一、复习。

  教师出示式题:

  1.(35+65)37 2.3537+6537

  3.85(174+26) 4.85174+8526

  5.(80+8)25 6.8025+825

  7.32(200+3) 8.32300+323

  根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?

  教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1组、3组的同学算第1题和第3题,第2、4组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  哪几组的.同学做得快?想一想,为什么第l、3组的大部分同学都那么快就算出了得数?多让几个学生说一说。

  教师:第1题和第3题中,两个数的和都是整百数;整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、3组做第5、7题,第2、4组做第6、8题。

  这次哪几组的同学做得快?想一想,这次为什么第2、4组的大部分同学都做得快了?

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  1.教学例6。

  (1)教师出示例题,计算937+963。

  教师:这道题是要计算两个乘积的和。

  仔细看一看这道题里的两个乘法计算中的因数有什么特点?

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100)

  联系上面的复习题,想一想这道题怎样做才能使计算简便呢?(先把37和63加起来,是100,再同9相乘,得900。)

  这是应用了什么运算定律?

  教师:这道道告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概括:首先要计算的是是两个乘积的和;两个乘法计算要有一个相同的因数,另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  (2)教师出示例题:10243。

  教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?(给学生留出思考时间。)

  教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便,现在的题目是102乘以43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,

  板书:10243

  =(100+2)43

  =10043+243

  =4386

  上面计算中的第二步根据是什么?(乘法分配律。)

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便;

  三、课堂练习

  做练习十四的题目。

  1.第3题,让学生口算。

  2.第4题,先让学生自己计算。核对时让学生回答一如果按运算顺序计算,应该先算什么?怎样计算简便?根据是什么?

  3.第7题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。

  4.第9题和第lo题。先让学生独立做,核对时要让学生说出每个算式的意义。

  5.提前做完的学生做第19*题。

《乘法分配律》教案11

  教学内容:

  P36/例3(乘法分配律)

  教学目的:

  1、引导学生探究和理解乘法分配律。

  2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3、使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:

  乘法分配律的意义和应用。

  教学难点:

  乘法分配律的反应用。

  教学过程:

  一、铺垫孕埋伏

  思考问题。

  在学习乘法的运算定律时,我们观察了一幅主题图,有的同学还提出了一个问题:一共有多少名同学参加了这次植树活动?

  二、新授

  小组讨论,尝试用不同的方法解决。

  教师引导学生用多种方法解答。

  学生汇报自己的解法。引导学生说明不同算法的理由。

  (1)(4+2)×25

  =6×25

  =150(人)

  4+2是每组一共有多少人,在乘25就算出25个小组一共有多少人了。

  (2)4×25+2×25

  =100+50

  =150(人)

  4×25表示25个小组一共有多少个人负责挖坑、种树,2×25表示25个小组一共有多少人负责抬水、浇树。再把它们加起来就是一共有多少人了。

  小组合作:

  (1)两组算式有什么相同点?

  (2)两组算式有什么不同点?

  (3)两组算式有什么联系?

  汇报。

  教师要根据学生的汇报,灵活地进行引导,总结出要点。

  你还能举出像这样的.几组算式吗?

  学生举例。

  根据学生举例板书。

  到底我们举的例子是不是符合这样的规律呢?请学生验证。

  请学生用语言表述出发现的规律。

  板书:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  (a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  你有什么好方法帮助我们大家记住乘法分配律?

  简记为:

  和与一个数相乘=积相加

  三、巩固练习

  P36/做一做

  P38/5

  在练习小结中,帮助学生记忆乘法分配律。

  四、小结

  学生汇报自己的收获。

  教师引导小结,相应完善板书。

  板书设计:

  乘法分配律

  一共有多少名同学参加了这次植树活动?

  (1)(4+2)×25(2)4×25+2×25

  =6×25 =100+50

  =150(人)=150(人)

  (4+2)×25=4×25+2×25

  ┆(学生举例)

  (a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  两个数的和与一个数相乘,可以先把它们与这个

  数分别相乘,再相加。这叫做乘法分配律。

《乘法分配律》教案12

  教学内容:苏教版小学数学第七册P54-55

  教学目标:

  1、让学生经历乘法分配律的探索过程,理解并掌握乘法分配律,初步了解除法分配律的应用。

  2、在学习中培养学生的探索意识和抽象概括能力。

  教学重点、难点:引导学生自主发现规律,用语言或其他方式与同伴交流规律。

  教学准备:教学情境挂图

  设计理念:从具体情境出发,感知乘法分配律,体验它的合理性;逐步抽象,感受乘法分配律的含义,并验证其适用的普遍性,进而抽象成字母表达式。在这些过程中,培养学生的探索意识和抽象概括能力。

  教学步骤

  教师活动

  学生活动

  一、创设情境导入新课

  谈话:快到“六一”儿童节了,老师准备买一些衣服作为礼物送给福利院的小朋友。你们愿意帮助老师计算一算吗?

  出示挂图:

  短袖衫32元/件裤子45元/条

  夹克衫65元/件

  提问:老师要买5件夹克衫和5条裤子,一共要付多少元呢?

  学生看图,独立思考。

  动手算出要付的钱数。

  二、探究新知掌握规律

  1.全班交流

  2.有没有不同的解答方法?

  学生回答,教师板书:

  (1)65×5+45×5

  =325+225

  =550(元)

  (2)(65+45)×5

  =110×5

  =550(元)

  3.谈话:虽然这两个算式不同,但是计算结果是相等的。我们就可以把两个算式写成一个等式。

  4.如果老师选择的是另两种服装,买的数量都是6件、8件......你还能用两种方法求吗?

  5.谈话:这样的'情况是巧合还是有规律呢?大家再举几个例子来算一算。找一找规律。

  6.揭示规律

  提问:观察这些等式,你发现了什么规律?

  你们发现的规律就是乘法分配律!

  如果用a、b、c表示3个数,这个规律怎样写?

  板书:(a+b)×c=a×c+b×c

  说说每一步算式的意义

  指名说出算式,再说说你先算的什么?

  先算买夹克衫和裤子各用多少元。

  先算买一套衣服用多少钱。

  学生动手写。

  65×5+45×5=(65+45)×5

  每组选择一题,用两种方法列式计算,并列成等式。

  学生动手举例,小组交流。

  指名回答:

  两个数的和与一个数相乘,等于两个加数分别与这个数相乘,再把两个乘积相加。

  学生口答。

  三、组织练习应用巩固

  1.做想想做做第1题

  指名口答结果,全班共同订正。

  2.做想想做做第2题

  集体评讲

  3.做想想做做第3题

  指名读题,说出题意。

  个别板演。

  4.做想想做做第4题

  提问:每小题两道算式有什么联系?哪一题计算比较简便?

  5.做想想做做第5题

  谈话:你认为哪种算法简便就用哪种方法计算。

  全班共同评议。

  学生自主思考、填写。

  独立判断。小组交流。

  用不同的方法计算,并说说用这两种方法列式的原因。

  学生自主计算。

  学生口答。

  学生阅读题目。

  学生独立计算

  四、全课总结自我评价

  提问:

  谁来说说这堂课的收获?你对自己这堂课的表现有什么评价?

  指名回答,自我评价。

  作业设计:(补充)

  教学反思:

《乘法分配律》教案13

  学情分析:

  乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。

  教学目标:

  1.理解并掌握乘法分配律并会用字母表示。

  2.能够运用乘法分配律进行简便计算。

  3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。

  4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。

  教学重点:

  理解并掌握乘法分配律。

  教学难点:

  乘法分配律的推理及运用。

  教学过程:

  一、情景激趣,提出猜想

  1.情景

  暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)

  出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?

  (设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)

  ①整理条件、问题

  从这段资料中你知道了那些信息?王老师遇到了哪些问题?

  ②学生列式,抽生回答: (18+23)×8, 18×8+23×8

  ③交流算式的意义

  第一个算式先算什么?再算什么?第二个算式呢?

  ④计算:(发现两个算式结果相等)

  ⑤观察、分析算式特点

  咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!

  现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?

  ⑥全班交流,引导学生从下面几个方面进行思考

  A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。

  B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。

  C.计算结果:结果相等。

  (设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)

  2.提出猜想

  真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的`算式都有这样的规律呢?

  怎样才能知道像这样的算式都有这样的规律?

  引导学生想到用举例的方法进行验证。

  师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。

  (设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)

  二、举例验证,证明合理性

  1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。

  2.分组举例

  两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。

  3.交流:谁愿意把你举的例子和大家一起分享?

  A.这个式子符合要求吗?

  B.这些式子都有一个共同的规律,这个共同的规律是什么?

  教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。

  (设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)

  三、概括归纳,建立模型

  1.个性概括

  这样的式子你们还能写吗?能写完吗?

  强调这样的例子还有很多很多,是写不完的。

  你能用一个式子将所有的像这样的式子都概括出来吗?

  学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。

  2.统一认识

  教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成

  (a+b)×c=a×c+b×c

  给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。

  3.进一步认识

  这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。

  齐读式子。

  (设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)

  四、巩固应用,深化认识

  1.哪些算式与72×35相等

  72×30+72×5

  72×35 72×30+5

  70×35+2×35

  70×35+2

  问:为什么相等?

  (设计意图:让学生理解乘法分配律的本质意义)

  2.你会填吗?

  (10+7)×6= ×6+ ×6

  8×(125+9)=8× +8×

  7×48+7×52= ×( + )

  问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。

  (设计意图:学生进一步深刻理解乘法分配律)

  3. 7×48+7×52 7×(48+52)

  这两个式子你想选择哪个进行计算?为什么?

  如果只给你第一个式子,你会想办法让你的计算变得简便吗?

  小结:利用乘法分配律有时候可以使计算变得更简便。

  (设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)

  <<<1234>>>

  4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。

  ①34×72+34×28(订正时问:为什么不直接算)

  (80+4)×25

  订正时问:把(80+4)×25写成80×25+4×25依据是什么?

  如果不用好不好算?

  (80+20)×25

  问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?

  教师小结:在计算中要根据数据特点,灵活运用乘法分配律。

  ②21×25 75×99+75

  小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。

  (设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)

  五、全课小结

  孩子们,你们今天收获了什么?

  当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?

  板书设计

  乘法分配律

  (18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)

  =41×8 … … … …

  =328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25

  18×8+23×8 … … … … (80+20)×25

  =144+184 个性概括:… …

  =328(元) (a+b)×c=a×c+b×c 21×25 75×99+75

《乘法分配律》教案14

  教学内容:教科书第27页例7,练习六的第3-4题。

  教学目的:使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

  教学重点:使学生学会应用乘法分配律进行简便计算。

  教学难点:

  教具准备:将复习中的题月写在小黑板上。

  教学过程:提高学生的逻辑思维能力。

  一、复习

  教师出示式题:

  1.(35+65)×372.35×37+65×37

  3.85×(174+26)4.85×174+85×26

  5。(80+8)×256.80×25+8×25

  7.32×(200+3)8.32×200+32×3

  “根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”

  二、学习新知

  1.小组探究,学习例7。

  (1)教师出示例题:102×43。

  教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。那么有没有简便方法?大家来研究一下。(组内可讨论研究,并写出最佳方案。)

  小组间可以互相探讨。教师选择最佳方法。

  板书:102×43

  =(100+2)×43

  =100×43+2×43

  =4386

  师生共同总结:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

  (2)教师出示例题:计算9×37+9×63。

  教师:这道题是要计算两个乘积的和。

  要求大家独立完成。

  教师概括:首先,要计算的是两个乘积的和;两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  三、课堂练习

  做练习六的题目。

  1.第3题,让学生口算。

  2.第4题,先让学生自己计算。核对时让学生回答:

  3.第5题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。

  4.第8题和第10题。先让学生独立做,核对时要让学生说出每个算式的意义。

  5.提前做完的学生可以做第12题。当学生想出一种算法后,还要引导学生想一想其它的做法。

  四、作业

  练习六的第5、6、8题。

  板书设计:乘法分配律的`应有(简便算法)

  计算:102×439×37+9×63

  =(100+2)×43=9×(37+63)

  =100×43+2×43=9×100

  =4386=900

  教学设计:本课教学尽可能的让学生自己简便计算的规律,以培养学生的探究精神,但课堂上可能出现各持己见、相持不下的局面,所以注意宏观控制。然而正是这样的局面,才能培养学生的多种能力,使他们得到全面的发展。

《乘法分配律》教案15

  教学内容:教科书第68页例5,第69页做一做中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。

  教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。

  教学过程 :

  一、复习

  教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。

  二、新课

  1.教学例5。

  教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:

  图中一共有多少个正方形?你是怎样想的?先请一个学生回答.教师把学生所列的算式写在黑板上。

  还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:

  (5+3)4 54+34

  教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。

  第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一起来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:

  这两个算式的计算结果怎样?

  这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:

  (5+3)4=54+34

  等号左面的算式是什么意思?(5与3的和乘以4。)

  等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)

  教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。

  教师:下面我们再看两组算式,先看:(18+7)6 186+76

  左面的算式是什么意思?(18与7的和乘以6。)

  右面的算式是什么意思?(18与7分别乘以6,再把两个积相加)

  算一算左面的算式等于什么?(18加7是25,25乘以6是150。)

  算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150)

  教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。

  这两个算式相等。说明18与7的和乘以6等于什么?说明18与7的'和乘以6等于18与7先分别乘以6再相加。)

  教师:我们再来看两个算式 20(15+9) 20xx+209

  先来计算一下这两个算式各等于多少?

  两个算式都等于多少?

  这两个算式相等,说明20乘以15与9的和等于什么?

  2.进行抽象概括。

  教师指着上面的算式提问:

  仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)

  教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。

  再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。

  等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。

  教师:如果用a、b、c表示三个数,可以写成下面的形式:

  (a+b)c=ac+bc

  等号左面(a+b)c表示什么意思?(表示两个数的和同一个数相乘)。

  等号右面ac+bc表示什么意思?(表示把两个加数分别同这个数相乘;再把两个积相加。)

  三、巩固练习

  教师在黑板上写算式:(200十3)27,提问:

  1.这个算式中是哪两个数的和乘以哪个数?

  根据,这个算式等于哪两个乘积的和?

  教师在黑板上再写算式:18527十1527,提问:

  这个算式中是哪两个数分别乘以哪一个数?

  根据,这个算式等于哪两个数的和乘以哪一个数?

  2.做第69页做一做中的题目。

  先让学生读题,再想一想每个方框里应该填什么数。

  四、作业

  练习十四的第1、2题。

【《乘法分配律》教案】相关文章:

《乘法分配律》教案08-01

《乘法分配律》教案10-28

乘法分配律教案10-21

乘法分配律的应用教案04-12

乘法分配律教案范文10-14

《乘法分配律》教案[精]10-28

乘法分配律数学教案04-03

《乘法分配律》数学教案10-01

乘法分配律教案15篇09-12

乘法分配律教案[汇总15篇]07-27