《求小数的近似数》教学反思

时间:2024-11-12 12:52:58 教学反思 我要投稿

《求小数的近似数》教学反思

  作为一位到岗不久的教师,我们需要很强的教学能力,写教学反思可以快速提升我们的教学能力,那么写教学反思需要注意哪些问题呢?以下是小编为大家整理的《求小数的近似数》教学反思,仅供参考,大家一起来看看吧。

《求小数的近似数》教学反思

《求小数的近似数》教学反思1

  教师明确小数的近似数的方法与整数的近似数相似。要用四舍五入法保留小数位数。要注意保留小数位数越多,精确程度越高这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的'主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

  但是上完之后,我总觉得:学生掌握得不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。

  我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。

《求小数的近似数》教学反思2

  已学内容:求一个小数的近似数,把不是整万或整亿的数改成用“万”或“亿”作单位的数。

  反思内容:学生对求一个小数的近似数掌握较好,基本能够根据题目要求求出一个小数的近似数。

  然而对于把不是整万或整亿的数改写成用“万”或“亿”作单位的数就不乐观了。主要有以下几个方面的原因:

  第一:以前学生学过把整万或整亿的.数改写成用万或亿作单位的数,而今天所学的是把一个不是整万或整亿的数改写成以“万”或“亿”作单位的数,这就增加了难度,学生不知小数点后面的小数部分该如何处理。

  第二:前面刚学过求一个小数的近似数,学生往往把求一个小数的近似数和把不是整万或整亿的数改写成用“万”或“亿”作单位的数相混淆,错把改写当成了求一个小数的近似数。

  针对以上情况,解决办法:一方面给学生讲清把不是整万或整亿的数改写成用“万”或“亿”作单位的数和把整万或整亿的数改写成用万或亿作单位的数方法相同,后者的改写是移动小数点,其实前者也是移动小数点,只不过运用了我们后面所学的小数的基本性质,把小数点后面的零去掉了。另一方面,讲清求一个小数的近似数和把一个数改写成指定单位的数有什么区别:求近似数需要省略后面的尾数,所以求的是一个数的近似数;而改写成以“万”或“亿”作单位的数,只要把小数点向左移动四位或八位,加一个单位就可以,没有改变数的大小。

  第三,多讲多练,在不断的重复练习过程中,让学生自悟。

《求小数的近似数》教学反思3

  教材是用一位小朋友的身高的近似数来引入新课的:豆豆的身高是0.984米,小芳说约是0.98米,小明说约1米,通过说法的不同引出争论。我先和孩子们一起复习了求整数近似数的方法——四舍五入法,为新课做好准备和铺垫。然后通过类比的方法,以生活中常遇到的购买商品这项事情为例,引出语句“省略十分位、百分位、千分位……后面的尾数”,接着让学生试着说出这些语句还可以怎么说,及时小结还可以说成“精确到什么位”、“保留几位小数”,最后让学生们自己看书上的例题,并做相应的习题。

  整节课下来,我觉得比较成功的地方有以下几点:第一,引导学生理解保留几位小数的含义:保留一位小数就是精确到十位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的'尾数……我是尽量让学生自己说出这些语句的,小结后还让学生熟读,再闭上眼背诵。第二,让学生自主探索“保留整数”的含义。在让学生独立阅读课本以后,我让学生试着把豆豆的身高保留二位小数、保留一位小数、保留整数,这样逐步过渡,让学生找出规律。第三,让学生知道为什么要学习求小数的近似数。这也是我比较看重的,要区别“填鸭式”教学,这个环节最有说服力。

  不足之处也很明显:虽然课堂上孩子们踊跃发言,但是,这样的课堂进程对我这样的课堂驾驭能力差的老师是个负担,使练习量大打折扣,所以作业情况有点两极分化,还好,作业完成得不太好的孩子都是日常生活中听说反应比较缓慢的,约占全班人数的十分之一。他们出现较多的问题是不能准确写成符合要求的小数:比如4.985要求保留两位小数,错写成一位小数。还有,学生对小数不同数位的对应位置还不够熟练,可能因为前几节课刚讲授完“统一单位”,没有给他们好好进行小复习。小数这个单元内容比较多,更需要及时复习。通过教参,我还发觉了遗漏了一个环节:“保留不同位数的小数求得的近似数是否相同?如果不同,哪个近似数会更精确一些?”

《求小数的近似数》教学反思4

  一些比较大的数据,由于书写不方便,需要将它们改写成以万作单位的数,这样既方便书写,又便于读数。亿以内数的改写和省略是本节课的教学重点,难点是亿以内数的.省略。通过本节课的学习使学生掌握大数的改写方法和利用“四舍五入”法省略万后面的尾数求近似数的方法。通过预习让学生明白三点,一是亿以内数的改写和求近似数是什么意思,二是哪样的数适合改写,哪样的数适合用四舍五入,三是四舍五入是什么意思,这样可以使好学生在学习时更有自信,不好的学生先预习,如果不懂,经过第二天老师的点拨会豁然开朗。课中,通过老师举的例子,在小组同学交流的基础上,很快明白了改写的意义。

  不足之处及改进:

  在教学的过程中可能会有极少数学生对改写与省略尾数的联系与区别不太了解。所以下次教学中,我会强调并让学生明白改写只改变数的计数单位而不影响数本身的大小,用等号;而省略尾数后改变了数的大小,求出的是原数的近似数,用约等号。

《求小数的近似数》教学反思5

  教学目标:

  1.结合豆豆测量身高这一现实情境使学生知道求一个小数的近似数在现实生活中的广泛应用,加深对小数的认识,培养学生的数感。

  2.能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。

  教学重点:求小数的近似数的方法。

  教学难点:理解表示近似数时,小数末尾的0不能去掉。

  根据学习目标,结合课本内容,我制定了两个学习任务:

  1.探究求小数近似数的方法。

  2.比较理解近似数1和1.0。

  下面就整个教学过程的设计进行简单的`分析:

  在激情导课环节,我先创设菜场买菜付钱情境,又结合课本的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。然后回忆整数的近似数方法,为学习新知做铺垫。

  在民主导学环节,任务一是让学生探究求小数近似数的方法。学生先自学,然后在小组内交流学懂的知识。最后运用学会的方法解决问题。进行展示时,主要依靠小组,组间交流互动。让学生总结出求近似数的方法。当学生还有表达不完整的时候,我再进行补充小结。在这里,我主要强调“精确”到某一位的另一种表达方式,即省略这一位后面的尾数。以帮助学生进一步理解求近似数的方法。关于近似数末尾的0为什么不能去掉,为了帮助学生理解这个问题,突破本节课的难点,我设计了任务二比较理解。

  . ≈1 ( )

  . ≈1.0( )

  1.思考有几种填法。把能填的数写在后面的括号里。

  2.小组同学说一说近似数1和1.0的不同之处。

  在学生展示交流完毕,我又出示了数轴图,目的是让学生直观的感受到近似数1和1.0意义的不同,精确程度的不同,1.0比1更精确。由此得出“表示近似数时,小数末尾的0不能去掉”。

  在检测导结环节我采用了课堂检测单,检测题围绕学习目标,检测学生对当堂知识的理解。第二题是结合生活实际提出,目的是再次让学生感受到生活中的数学,培养学生做一个生活的有心人,知识的发现者。

  在进行小组交流时,由于一开始没有调动起学生的积极性,课堂显得有点沉闷。可是在后面的学习中,学生逐渐的打开了思路,积极主动的参与到学习中来。不但自主探索到求近似数的方法,而且理解了为什么表示近似数时末尾的0不能去掉。可以说两个任务的呈现都比较合理,有可操作性,引导学生完成学习目标的方向非常明确。任务二的呈现稍显难度,但这也是这堂课的亮点。采用数形结合的方法,为学生直观的理解知识搭建了合理的平台。

  在以后的教学中,我觉得应该在钻研教材方面下大功夫,只有这样才能更好的用教材,呈现合理的学习任务。对学生学习方法的培养也是课堂教学的重要任务,我们一定要努力处处为学生着想,时时为学生服务,课课让学生精彩!

《求小数的近似数》教学反思6

  作为一名刚工作一年的新教师来说,第一年还没有真正接触到本专业课程的新教师来说,通过这次的公开课,让我进一步的认识到了自身的教学经验不足、对教材的理解;深度的把握等等是我的弱点,众多问题的暴露,促使我一定要利用一切可以学习、可以提高的机会来充实自己。现对这节课作如下反思总结:

  首先是教学设计上,对教材深度和广度上的挖掘不够,对于准确数和近似数,学生在没学习这堂课之前学生也能分辨出一些数,然而我在这堂课所要学习的必要性没有很好的落实到位,特别是没有涉及到近似数的'必要性,生活中存在着大量的数据,但有些实际数字是无法来表示的,其实可以这样一句带过,让学生明白就可以了。另外本节课设置的难点未顺利的突破,可以在深入的练习一个下去,就可以让学生明白,以后这方面还必须要加强。另外本节课程序的安排,例题的选择,比较合适,贴近学生的生活。设计的题目具有一定的梯度,学生容易接受。所以在今后的教学工作中,要加强对教材的理解,吃透教材才可以更好的教学。

  其次是课堂教学上,由于是我自身对教材的认知不到位,教学中对概念的处理过程不恰当。对部分题目的引导,分析应该更彻底,让学生易懂;还有就是最关键的是题目完成后要做适当的总结,给学生有个方向,更加的明确目的,不然学生还是浮在那里,没有很好的落实到实处。另外还可以借助书本的例子,给学生更直观,更形象的感官。另外作为新教师来说最重要的是要站稳教台,这就需要我各方面的提升。还有课堂上的组织形式,与学生间的沟通交流,板书问题,课堂上的评价等等,在这节课上暴露了很多问题,这些都成了以后教学活动中要改进和提高的各个方面。

  再次就是我自身各方面的问题了,一个语言上的不够精练,对一些问题重复述说,还自觉与不自觉的搀杂着些口头禅。对于这方面以后可以在课前把课堂上要说的话都写下来,反复练习,得以提高。另一个就是上课的投入方面,由于本节课精神比较饱满,真的可以感染到学生,他们也个个提着精神在听课。还一个就是形体要放开些,大胆些,肢体语言到位和丰富些。

  总之,从这堂课之后反思自己的教学行为,总结教学的得与失,对整个教学过程进行回顾、分析和审视,形成自我反思的意识和自我监控的能力,不断丰富自我素养,提升自我发展能力,逐步完善教学艺术,以期实现教师的自我价值。

《求小数的近似数》教学反思7

  《求一个小数的近似数》这节课教学内容是建立在学生已经对求整数的近似数基础上进行教学上,这两个内容都是让学生根据四舍五入法去求数的近似数,但是不同点就是近似的部位不同,针对这个情况,在教学这节课时,以求整数的近似数进行导入,让学生说一说近似的依据——也就是四舍五入法,从而引入小数近似数的'教学。这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

  但是上完之后,我觉得:学生掌握得不是不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。对于重难点的突破尚有所欠缺,驾驭教材的能力有所欠缺。同时,应该在课堂上多给学生自己表达的机会,同时在“冷场”的时候多调动学生的积极性。

  而《求一个小数的近似数》这一部分内容的练习题目要求很多样,如同是保留一位小数,可以说是保留一位小数,也可以说是精确到十分位,或者是省略十分位后的数等等,针对这一情况,让学生在练习时多读题,并逐一进行分析,如精确到十分位,省略十分位后的数都是要求保留几位小数,这样学生就能更好的理解。

《求小数的近似数》教学反思8

  在几年的课堂实践中,我发现我对数学书的利用率不是很高。教应用题时,把例题写在小黑板上讲解;教式题、计算题时,有时干脆直接把题目写在大黑板上进行讲解。只有在让学生做练习题时,才叫学生把书本打开。所以有时候,我上到第几页,学生都没处找。在本节课中,我没有按照惯例出示例题,进行示范、讲解,学生被动的接受。而是充分利用教材这一媒体,让学生进行自学。俄国教育家乌申斯基说过:“没有任何兴趣,被迫进行学习会扼杀学生掌握知识的意愿。”所以我在课前通过设问:“来认识书本上介绍的另外一种数”,激发学生乐于看书的兴趣。通过自学,学生掌握了近似数的概念。并能联系实际,说说生活中的近似数。然后,再次利用书本,让学生看书自学四舍五入法。并把自己看到的内容跟同桌交流,然后说给全班小朋友听。数学教学过程伴随着数学交流的过程。包括教师与学生的交流、学生与学生的交流、学生与教材及教学媒体的交流、以及学生的自我交流等。课上,我除了让学生自学,与教材进行交流外,还让学生把自己的想法说给同学听,与学生进行交流,培养学生的'交往能力。最后,利用书本,让学生自学近似数的应用。整堂课,教师只是通过提问,让学生围绕问题进行自学。从头到尾,利用数学书开展学习。学生学得开心,学得主动。

  但在自学过程中,我也发现存在不少问题。如:教师的问题该如何设计;怎样引导学生进行自学,而不是简单的把书本上的内容看一遍。

《求小数的近似数》教学反思9

  师:今天,我们来认识另外一种数,[教学反思]求一个数的近似数教后感。下面,把书本打开,看看书本上是怎样介绍另外一种数的。

  生看书自学课文第一、二自然段。

  师:同桌交流一下,你看到的数叫什么,生活中碰到过这样的数吗?举例说一说。

  全班交流。

  生:我知道另一种数叫近似数,它表示大概有多少。

  生:我知道近似数就是不是很准确的,只要接近这个数,大约是多少。比如说,我身高大约1米30。

  生:我来说,我家离学校骑车大约要10分钟。

  ……

  师:那我们怎样求一个准确数的近似数呢?再来看书本例5例6和下面的那段话。把不懂的地方划出来。同桌交流。

  学生再次看书自学。

  生:我知道用四舍五入法可以求一个数的近似数。

  四人小组讨论什么叫四舍五入法,汇报,请学生结合具体的数来讲一讲。请学生做小老师,到讲台上来讲给学生听,数学论文《[教学反思]求一个数的近似数教后感》。

  生:我说101约等于100,我看十位上的数是0,它不满5,直接把尾数舍去。

  生:我说289约等于300,我是看十位上的8,它比5大,把尾数舍去后还要向前一位进一,所以约等于300。

  师:你们都说得很好。再来讨论一下,你认为979省略最高位后面的尾数约是多少?919呢?4919呢?4499呢?

  生依次回答,对4499出现的错误较多,认为应该约等于5000。

  师:再来把书本上介绍的四舍五入法齐读一遍,想一想,它到底应该等于几。

  生:哦,我看明白了,4499的最高位是千位,我们要看尾数左起第一位,它是百位上的4,4不满5,所以直接把尾数舍去。4499约等于4000,而不是5000。

  师:弄懂了四舍五入的意思,我们一起来练一练。

  学生做练习第一题。

  师:学了求一个数的近似数,对我们的数学有什么好处呢?再次自学书本例7。

  生:学了求一个数的近似数,我们可以进行估算。有时,可以帮我们检查计算是不是正确。

  师:一起来估算一下328×4约等于多少?

  生:我把328省略最高位后面的尾数,约等于300,300×4=1200,所以328×4的结果跟1200接近。

  课后反思

  在几年的课堂实践中,我发现我对数学书的利用率不是很高。教应用题时,把例题写在小黑板上讲解;教式题、计算题时,有时干脆直接把题目写在大黑板上进行讲解。只有在让学生做练习题时,才叫学生把书本打开。所以有时候,我

  上到第几页,学生都没处找。在本节课中,我没有按照惯例出示例题,进行示范、讲解,学生被动的接受。而是充分利用教

  求小数的近似数教学反思6

  本节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法——四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的“0”必须保留,不能去掉;连续进位的问题。

  教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的'知识还原与生活,应用与生活。

  在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0。984≈0。98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0。984≈1。0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0。984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。

  但在“保留几位小数、精确到什么位、省略什么位后面的尾数”都出现以后,没有把它们之间的联系梳理出来,这样就会给学生造成要求太多记不住的麻烦。如果让学生明白保留两位小数就是要精确到百分位,省略百分位后面的尾数也是要精确到百分位,学生审题后就会自然地归到精确什么位,看什么位进行四舍五入的思维模式,这样就有了更加清晰的思维。

《求小数的近似数》教学反思10

  《求小数的近似数》教学反思二这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解保留几位小数;精确到什么位;省略什么位后面的尾数这些要求的含义;表示近似数的时候,小数末尾的0必须保留,不能去掉;连续进位的问题。

  教学从生活出发,让学生感受数学与实际的联系。在引入环节,在超市买菜时,总价是7、53元,而售货员只收7元5角钱,这就是在求7、53这个小数的近似数。在创设情境环节,结合教科书的主题图,创设了邻居家的孩子小豆豆测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

  在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.9840.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.9841.0后,让学生讨论0能不能舍去,使学生明确了0如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加0。最后引导学生总结出求小数近似数的方法。

  虽然求小数的近似数的方法与整数的近似数相似。让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的'主导作用和学生的主体地位。但是一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至连环进位,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。

  但我总觉得:学生掌握得不好,尤其是根据四舍五入法求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。

《求小数的近似数》教学反思11

  这是课本第13页例7的教学内容,重难点就是“四舍五入”的方法,省略万位后面的尾数,掌握用“四舍五入”求近似数的方法。在本节课的教学过程中,学生能够在原来学习的“四舍五入”法基础上更深一层的掌握“四舍五入”法,将亿以内的数省略万位后面的尾数,并且改写成用万作单位的数。重点要求学生要先找到万位,然后再找出尾数的最高位千位上是几,最后再用“四舍五入”法求近似数。应当注意的是:1、结合实例让学生体会近似数的作用,了解求近似数的必要性。2、加强学生对“四舍五入”法的理解,使学生理解将非整万的数改写成以“万作单位的数”,实际上是省略了万位后面的'尾数,所以得到的是一个近似数,要写成“≈”而不是“=”,进而加深学生对“四舍五入”法含义和作用的理解。

  我深深的感悟到,老师在课堂上的启发,引导一定要到位,帮助学生疏通思维的障碍和盲点,突出学生的主体性,尽量让学生以小组合作,交流,自主探究的学习方式进行学习,以达到课堂的高效和师生关系的和谐。

《求小数的近似数》教学反思12

  亿以上数的改写和求近似数是在学生已经学习了亿以内数的读写和改写亿以内的数及求近似数的基础上进行的。通过教学我感觉到:

  1.复习亿以内数的改写和求近似数。首先让学生举例说出一个含有两级的大数,其他学生在自己的本子上写出来,一生板演。根据学生举得例子要求将整万的数改写成“万”做单位的数,将不是整万的数,用“四舍五入”法省略万位后面的尾数,重点让学生说一说怎样改写和求近似数的方法。

  2.“你能举例含有三级的大数吗?”老师的这个问题引发学生的兴趣,大家争先举例,板书呈现出来。

  1.看,这些大数含有三级,你会读吗?这些数有什么特点?你能将它们改写成用“亿”作单位的数吗?对于学生举得例子中整亿的数,老师放手让他们自己改写(比较简单),改写后,说一说怎样改写的,应注意什么?

  2.不是整亿的数省略亿后面的尾数求近似数,老师也是给学生充足的空间时间,自己尝试做一做。汇报交流时,重点强调,省略亿位后面的'尾数关键要看哪一位上的数是否满五?

  总之,学生自己能学会的知识,老师绝不包办代替,给学生留有空间,鼓励他们大胆尝试,利用已有的知识和学习方法自主探索,解决新的问题,提高数学能力。

《求小数的近似数》教学反思13

  教材解读:

  本节课教学用”四舍五入”的方法求一个小数的近似数。教材以地球和太阳之间的距离为素材,设计了三个问题组织学生进行探索。先通过例1,引导学生用“四舍五入”的方法把1.496精确到十分位,再通过例2,引导学生用同样大方法把1.496精确到百分位,然后引导学生比较上面求出的两个近似数,理解保留的小数位数越多,求出的近似数越精确。教材安排“试一试”与例题不同的是,这里取近似数的过程中需要把百分位舍去。并引导学生总结和归纳求小数近似数的方法。

  教学中引入生活实例,通过探究、互动、总结、归纳等活动,让学生掌握求小数的近似数的方法,要注意结合具体情境求小数近似数,让学生体会数学的应用价值。

  教学重点:求小数近似数的方法。

  教学难点:理解保留的小数位数越多,求出的近似值越精确。

  目标预设:1、会根据要求用“四舍五入”的方法求一个小数的近似数。

  2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。

  3、进一步理解和掌握所学的知识,体会数学在日常生活中的广泛应用,感受数学的文化价值。

  学生经验:学生已经掌握了把大数目改写成整万、整亿数和整数近似数的知识,为本节课求一个小数的近似数奠定了基础。

  教学准备:小黑板

  教学过程:

  一、创设情景、揭示课题

  昨天老师到银行办事,听见一位老爷爷和储蓄员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,储蓄员付给爷爷9.5元,爷爷硬要9.6元,你觉得付多少比较合理?

  学生回答后,问这个数据是怎么得到的?

  今天我们学了求一个小数的近似数之后,你就会解决生活中这类现象了。(出示课题)

  二、复习铺垫

  1.把下面的叙述换一种说法:

  (1)1999年全国有小学生145371600人。也可以说:1999年全国大约有小学生(万)人。

  (2)光的传播速度是每秒钟299800千米。也可以说:光的传播速度大约是每秒钟(万)千米。

  2.下面的□里可以填上哪些数字?32□645≈32万 47□05≈47万

  (1)独立完成。

  (2)校对答案。

  (3)说说求近似数的方法——四舍五入法。

  板书:求近似数一般用四舍五入法

  三、自主探究、合作交流

  (一)、出示例题:

  例1.地球和太阳之间的平均距离大约是1.496亿千米。

  接着明确要求:

  精确到十分位是多少亿千米?

  精确到百分位是多少亿千米?

  精确到整数是多少亿千米?

  然后让学生进行独立思考,发表意见,说出结果及想法。

  1、精确到十分位

  思考:精确到十分位就是要保留几位小数?

  (1)学生独立探索。

  (2)小组交流。

  (3)反馈:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上的9满5,进一。

  1.496亿千米≈1.5亿千米

  讲解:精确到十分位,就是保留一位小数。

  2、精确到百分位

  (1)独立完成

  (2)组织交流。

  精确到百分位就是要保留两位小数,就要省略百分位后面的数,要看千分位上的数。千分位上的6,省略尾数后向百分位进1。百分位上9+1=10,满十又要向前一位进一。

  1.496亿千米≈1.50亿千米

  问:近似数1.50末尾的`0能去掉,为什么?

  学生讨论:明确:不能去掉,去掉就不符合要求了。

  教师总结:0不能去掉,它起到占位的作用。

  3、比较精确度。

  问:1.5和1.50哪个更精确?

  学生讨论后汇报想法。

  想法1:1.5是精确到十分位的结果,1.50是精确到百分位的结果,所以1.50比1.5更精确。所以1.50末尾的0不能去掉。

  想法2:近似值是1.5的两位小数在1.45-1.54之间,而近似值是1.50的三位小数在1.495-1.504的范围更大,所以1.50比1.5更精确。

  4、精确到整数

  (1)独立完成

  (2)组织交流。

  精确到整数就要省略百分位后面的数,要看十分位上的数。十分位上的4,

  省略小数点后的尾数。

  5、教学“试一试”

  学生独立解决,集体订正。

  引导学生比较与刚才例题的区别,进一步明确什么时候应四舍,什么时候应五入。

  (二)小结:

  教师提出问题:求小数近似数应注意什么?

  引导学生讨论知道:求一个小数的近似数要注意两点:

  (1)要根据题目的要求取近似值,

  如果要保留整数,就要看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。

  (2)取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。

  (三)、教学“练一练”

  学生独立解决,集体订正。

  电评时引导学生在两方面进行比较:

  (1)按不同精确要求求近似数的比较。

  (2)取一个数的近似数与把一个数改写

  成以“万”或“亿”作单位的小数的方法的比较。

  第二小题练习完毕后,再要求学生把改写后的小数和求出的近似数分别放入原来的语言环境中读一读、比一比,体会到用“万”作单位的小数及其近似数的应用价值。

  四、练习巩固,拓展应用

  1.填空:

  ① 求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……

  ②近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.

  2.判断题(用手势表示“√”或“×”)

  ①3.97精确到十分位是4.0。()

  ②把9.996精确到百分位是10.00。()

  ③8和8.0的大小相等,它们的精确度也相同。()

  ④在表示近似数时,小数末尾的0应该去掉。()

  3.“练习七”第五题。

  (1)学生独立完成

  (2)教师检查反馈。

  说明:把王强身高精确到百分位,体重精确到个位,让学生体会到实际应用中要根据需要来确定近似数的精确程度。

  4、“练习七”第6题。

  (1)组织学生观察、比较,说说哪组的两个数是等值。哪组的两个数是近似。

  (2)独立填写后再组织汇报交流。

  5、“练习七”第7~8题。

  学生独立审题并解答。

  6、解决前面的问题。在实际生活中,9.547元≈()元

  5.小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看什么地方有了小数近似数,下节课来大家交流。

  五、课堂作业:

  “练习七”第4题。

  六、收获提炼

  今天这节课你有哪些新的收获?还有什么要提醒同学们注意的地方吗?

  七、课后反思

  1、探索是数学的生命线,没有探索就没有数学的发展。课始,先让学生明确探索的目标,给学生以思维的方向。课中,引导学生从求整数的近似数迁移至小数,使学生的探索思维多角度、多层次展开,在学生探索的过程中学习数学、理解数学,从而感受到数学的魅力。

  2、新课程注重强调学生的主体地位。但是我认为在特定的课堂时空中,要让没有多少探索经验和能力贮备的学生完全自主地“找”出求小数近似数的方法,也实在有些勉为其难。

  因此,在课堂教学中我注意适度地加以引导,做到了放得“开”,收得“拢”;放得适度,收得自然。

  既尊重了学生的主体地位,又张扬了学生的个性,同时有效地完成了课堂教学任务。

《求小数的近似数》教学反思14

  教学之前,学生已经掌握了四舍五入求一个数的近似数。从上学期学生的各个项目反馈来看,掌握得还是比较乐观。而小数的知识刚刚习得,为此本堂课对于大部分学生新知识的理解,我个人觉得难度不是很大。所以本堂课,我把教学重心放在学生对于理解求小数近似数的三种表述,如何根据要求表述求一个小数的近似数,以及在表示近似数时小数末尾的0不能随便改动。

  课堂上,将1.666……怎样表示更恰当。学生呈现了2元,1.7元,因为在之前的练习中我们已经接触了给物体正确标价.当学生提出这样的观点的时候,立刻引起其他学生意见,这样的表示不够合理,当以元为单位时,应该是两位小数.故,马上有学生想到改为1.70元.我顺势板书1.70元.看者这个数字底下学生议论纷纷,心急的学生脱口而出:“这个1.70怎么来的?”我们继续倾听学生自己的理解.在表达的过程,学生自己也 意识到了错误所在,同学们也明白了错误根源.此时我提出,“以元为单位,小数部分保留了几位?”“省略的是哪一位后面的尾数,”“是舍还是进,看哪一位?”这连续的三个问题,帮助学生整理思考的`过程。同时也连接了“保留两位小数”“省略百分位后面的尾数”二者之间的联系,以及回顾四舍五入方法。

  掌握了保留方法之后,再引导学生区分在求近似数时1.0和1之间的不同之处。学生自己畅所欲言,表达自己的观点,在生生交流中明确近似数中的0不能随意去掉。

  最后讨论取值范围。

  整堂课前奏非常顺利,学生看似一下子就能掌握基本方法,顺利完成任务。但是总感觉学生的上课热情不高,时常观察到学生懒散地坐着,思绪也肆意放飞,心不在焉。课堂节奏绵软无力。可见课堂的趣味性有待提高。

《求小数的近似数》教学反思15

  本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。

  成功之处:

  1、复旧引新,沟通前后知识间的.联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413 35628 65214 90088 ,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。

  2、联系生活实际,体会数学与生活的联系。结合主题图,创设了同学们测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把盛维维的身高1.584米精确到分米、厘米。这样把学习求一个小数的近似数的知识还原与生活,应用与生活。

  3、深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到个位。

  4、重点比较,保留整数的1和保留一位小数1.0的区别。通过在数轴上的取值范围,使学生体会到保留整数1的取值范围在0.5~1.4,保留一位小数的1.0的取值范围在0.95~1.04,保留整数的1和保留一位小数1.0虽然大小相等,但是精确度不一样,保留的小数位数越多,就越接近准确值,也就更精确。

  不足之处:

  1、 练习时间有点少。

  2、 个别辅导不够。

【《求小数的近似数》教学反思】相关文章:

《求小数的近似数》教学反思08-27

《求小数的近似数》教案07-01

求近似数教学反思03-03

小数的近似数教学反思07-03

求一个小数的近似数教案04-12

《小数的近似数》教学反思(通用15篇)07-13

《近似数》教学反思06-25

近似数教学反思02-10

商的近似数教学反思09-04