《圆锥的体积》教案

时间:2025-09-07 08:58:40 教案 我要投稿

【实用】《圆锥的体积》教案

  作为一位杰出的老师,往往需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。教案应该怎么写才好呢?下面是小编帮大家整理的《圆锥的体积》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

【实用】《圆锥的体积》教案

《圆锥的体积》教案1

  教学内容:

  教材第11~17页圆锥的认识和体积计算、例1。

  教学要求:

  l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

  2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

  3.培养学生初步的空间观念和发展学生的思维能力。

  教具准备:

  长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的 的教具。

  教学重点:

  掌握圆锥的特征。

  教学难点:

  理解和掌握圆锥体积的计算公式。

  教学过程:

  一、铺垫孕伏:

  1. 说出圆柱的体积计算公式。

  2. 我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的`体积。(板书课题)

  二、自主探究:

  1.认识圆锥。

  我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

  2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

  3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

  (1) 圆锥的底面是个圆,圆锥的侧面是一个曲面。

  (2) 认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

  4.学生练习。

  口答练习三第1题。

  5.教学圆锥高的测量方法。(见课本第17页有关内容)

  6.让学生根据上述方法测量自制圆锥的高。

  7.实验操作、推导圆锥体积计算公式。

  (1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)

  (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。

  (5)启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积13=底面积高13

  用字母表示:V= 13 Sh

  (6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以 13 ?

  8.教学例l

  (1)出示例1

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

《圆锥的体积》教案2

  教学内容:教材第16~19页圆锥的认识和体积计算、例1。

  教学要求:

  l.使学生认识圆锥的特征和各部分名称,掌握高的特征,知道测量圆锥高的方法。

  2.使学生理解和掌握圆锥体积的计算公式,并能正确地求出圆锥的体积。

  3.培养学生初步的空间观念和发展学生的思维能力。

  教具准备:长方体、正方体、圆柱体等,根据教材第167页自制的圆锥,演示测高、等底、等高的教具,演示得出圆锥体积等于等底等高圆柱体积的的教具。

  教学重点:掌握圆锥的特征。

  教学难点:理解和掌握圆锥体积的计算公式。

  教学过程:

  一、铺垫孕伏:

  1.说出圆柱的体积计算公式。

  2.我们已经学过了长方体、正方体及圆柱体(边说边出示实物图形)。在日常生活和生产中,我们还常常看到下面一些物体(出示教材第16页插图)。这些物体的形状都是圆锥体,简称圆锥。我们教材中所讲的圆锥,都是直圆锥。今天这节课,就学习圆锥和圆锥的体积。(板书课题)

  二、自主探究:

  1.认识圆锥。

  我们在日常生活中,还见过哪些物体是这样的圆锥体,谁能举出一些例子?

  2.根据教材第16页插图,和学生举的例子通过幻灯片或其他方法抽象出立体图。

  3.利用学生课前做好的圆锥体及立体图通过观察、手摸认识圆锥的特点。

  (1)圆锥的底面是个圆,圆锥的侧面是一个曲面。

  (2)认识圆锥的顶点,从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示出这条高)提问:图里画的这条高和底面圆的所有直径有什么关系?

  4.学生练习。

  口答练习三第1题。

  5.教学圆锥高的测量方法。(见课本第17页有关内容)

  6.让学生根据上述方法测量自制圆锥的高。

  7.实验操作、推导圆锥体积计算公式。

  (1)通过演示使学生知道什么叫等底等高。(具体方法可见教材第18页上面的图)

  (2)让学生猜想:老师手中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

  (3)实验操作,发现规律。

  在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的。

  老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

  (4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的.圆锥才是圆柱体积的。

  (5)启发引导推导出计算公式并用字母表示。

  圆锥的体积=等底等高的圆柱的体积=底面积高

  用字母表示:V=Sh

  (6)小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以?

  8.教学例l

  (1)出示例1

  (2)审题后可让学生根据圆锥体积计算公式自己试做。

  (3)批改讲评。注意些什么问题。

  三、巩固练习

  1.做练习三第2题。

  学生做在课本上。小黑板出示,指名口答,老师板书。错的要求说明理由。

  2.做练习三第4题。学生书面练习,小组交流,集体订正。

  四、课堂小结

  这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

  五、课堂作业

  练习三第3题及数训。

  六、板书:

  圆锥

  圆锥的特征:底面是圆,

  侧面是一个曲面,展开是一个扇形。

  它有一个顶点和一条高。

  圆柱的体积=底面积高

  圆锥的体积=圆柱体积

  圆锥的体积=底面积高V=Sh

《圆锥的体积》教案3

  教学目标:

  1、认识圆锥,理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

  2、通过同学们自主探究,理解圆锥体积公式的推导过程,培养同学们初步的空间观念和动手操作能力。

  3、采取小组合作、质疑问难、讨论交流的学习方式,培养同学们观察、猜测、分析、比较、综合的学习思考方法。

  教学重点:

  掌握圆锥体积的计算方法。

  教学难点:

  理解圆锥体积公式的推导过程。

  教学流程 :

  一、创设情境

  让问题来源于生活 为了创设生活化的、富有探索性的问题情境,我先让学生看电脑显示,(在海边堆沙堆的画面),通过观察发现了什么,学生发现沙堆都是近似圆锥形的,接着让学生根据情境提出他们想知道的知识,有的的同学想知道圆锥的特点,还有的多学生都想知道沙堆的体积有多大,从而确定本节课的研究课题“圆锥的认识和体积”。这样一来教学问题自然地呈现在学生面前,学习现场从生活实际巧妙地引进课堂。这一环节的处理,使问题来源于孩子们,来源于生活,极大的调动了学生的探究热情。

  二、自主探究

  让学生体验创造的快乐 在这一环节中,我首先让学生联系生活,找出生活中哪些物体的形体是圆锥体的?通过让学生看生活中的圆锥体的图片,调动学生积极思维,加深学生对圆锥的认识,从而使学生理解数学来源于生活,生活中处处有数学。然后让学生根据生活经验制作圆锥体,在教学中为学生提供纸做的扇子、铅笔、转笔刀、直角三角形等材料,让学生在制作的的过程中,小组讨论交流的基础上,认识了圆锥,从而概括出圆锥的特征。同时用课件演示圆锥的各部分名称,并通过指一指实物圆锥的高,从而明确从圆锥的顶点到底面圆心的距离才是高。同时置疑,从实物中我们无法看出圆锥的高,那么我们怎么知道它的高呢?我将先让学生自己去研究测量方法,并根据汇报出示课件,然后再实际测量自己制作好的圆锥的高。在这一过程中,我充当了一名引导者,提示着研究方向,我与学生相互分享彼此的思考、见解和作品。学生在广阔的空间里,体验着成功的喜悦。

  三、提供时空,让学生品位研究的乐趣

  在这个环节中,我分四步进行:

  第一步:联想猜测 让学生猜测、设想求圆锥体积的方法,学生独立思考后交流讨论,可能会有以下设想:

  1、以长方形直角边为轴旋转一周得到圆柱体,以三角形直角边为轴旋转一周而得到圆锥体,由三角形面积是长方形面积的一半而联想到圆锥体积是圆柱体积的一半。

  2、学生也可能认为两个同样大小的圆锥把一个倒过来拼不成一个圆柱,圆锥体积不是圆柱体积的二分之一等等各种设想。这里老师给学生提供了联想和交流的空间,培养了他们的创新能力。

  第二步:探索质疑 学生根据自己的设想,得到圆锥与圆柱体积之间存在某种关系:圆锥体积=底面积 ×高 ×倍数。 接着教师用电脑出示一个和圆锥不等底等高的圆柱,并提问:“你们所说的圆柱是这样的圆柱吗?”结合学生的回答再显示出与圆锥等底等高的圆柱。这样的设计,解决了部分有困难的学生心中的疑问。

  第三步:分组验证 学生动手实验,小组合作探究圆锥体积的计算方法,学生可能会有多种方案:

  1、从三角形面积公式的推导过程中受到启发,用几个同样大小的橡皮泥做的'圆锥体,捏成一个和它等底等高的圆柱体,从而推导出圆锥体积的计算公式。

  2、有的学生利用自然课中学过的知识:物体排出水的体积就是物体的体积,发现实体圆锥三次排出的水正好装满空圆柱。

  3、还有的学生利用传统的装沙或装水的方法进行实验等等。 这样的设计,由教师操作演示变学生动手实验,充分发挥了学生的主体作用。

  第四步:形成共识 通过学生演示、交流、讨论、教师演示(课件),得出圆锥体积的计算公式:圆锥体积=底面积 ×高 × 这个环节充分发挥了学生的主体作用,让学生在设想、探索、实验中发展动手操作能力及创新能力。

  四、回归生活,让探究变得富有魅力

  1、以练习的形式出示例1。 例1:一个圆锥体冰淇淋的底面直径是6厘米,高是15厘米。据统计,每毫升冰淇淋约可以产生5.02焦耳的热量。这个圆锥体冰淇淋大约可以产生多少焦耳热量?(得数保留整数)

  2、口答

  3、变式练习:求下面各圆锥的体积。

  (1)底面半径是4厘米,高是21厘米。

  (2)底面直径是6分米,高是6分米。 这道题是培养学生联系旧知灵活计算的能力,形成系统的知识结构。

  4、操作练习。

  让学生把实验用的沙子堆成圆锥形沙堆,合作测量计算出它的体积,或是利用学生从生活中找的一个圆锥形物体,想办法计算出它的体积。这道题就地取材,通过这道练习,给了学生一个运用所学知识解决实际问题的机会,让他们动手动脑,提高了学习数学的兴趣。培养学生解决实际问题的能力,了解数学与生活的紧密联系。 知识对学生来说,是自己对生活的现象的解读。书本知识是生活的一种提取、概括和应用,它给学生学习提供了一种视角,搭起一座平台。生活的边界就是教育的边界。我以一种开放的、立体的教育视野和课程理念,引领学生走进生活,创造性地把生活和知识关联起来,原本枯燥的探究也变得充满灵性。

《圆锥的体积》教案4

  教学目标:

  1、让学生掌握圆锥体积的计算方法,并能运用公式计算圆锥的体积,解决简单的实际问题。

  2、通过动手操作实验,使学生经历圆锥体积公式的推导过程。

  3、在观察与分析、操作与实验的学习活动中培养学生主动探究问题和空间想象能力。

  教学重点、难点:

  掌握圆锥体积公式。

  教具使用:

  课件,等底等高长方形、三角形彩纸,等底等高圆锥、圆柱教具,水。

  教学过程:

  一、创设情境,问题导入

  1、师出示长方形、三角形纸各一张。

  提问:等底等高的长方形与三角形面积有什么关系?

  2、提问:旋转长方形,三角形各得到什么图形?

  长方形沿着长旋转一周得到圆柱、直角三角形沿一条直角边旋转一周形成圆锥。

  3、观察。旋转后得到的圆柱和圆锥你有什么发现?(等底等高)

  4、猜想。旋转后得到的圆锥的体积与圆柱的体积又有怎样的关系?

  二、探究新知

  1、实验

  师出示:等底等高的圆柱、圆锥学具、水。

  师:现在我们就要做一个实验,看看圆柱和圆锥的体积有什么关系?

  生动手实验:

  预设方案:①先灌满圆锥,3次倒入圆柱

  ②先灌满圆柱,3次倒入圆锥

  2、生演示汇报

  师板书:圆锥的体积等于圆柱体积的

  质疑:

  追问:是否同意上面的结论。引导学生说出:和它等底等高补充板书。

  3、小结操作过程,课件演示。

  4、推导公式。让生说圆锥的体积用字母如何来表示?

  v锥= sh= πr2h

  三、实际应用

  (1)、一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  生独立完成,师巡视,生板书。

  强调:19×12是与圆锥等底等高圆柱的体积,再乘

  ×19×12=73(立方厘米)

  (2)、在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是米。每立方米小麦约重750千克,这堆小麦约有多少千克?

  生独立完成,师巡视,生板书

  ×(4÷2)2××=(立方米)

  ×750=4710(千克)

  3、填空

  ⑴一个圆锥的底面积是12平方厘米,高是6厘米,它的体积是()立方厘米。

  ⑵一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

  ⑶一个圆锥比与它等底等高的圆柱体积少12立方厘米,圆柱体积是()立方厘米。

  4、判断:

  ⑴圆柱一定比圆锥体的体积大。()

  ⑵圆锥的体积等于和它等底等高的`圆柱体积的。()

  ⑶正方体、长方体、圆锥体的体积都等于底面积×高。()

  ⑷等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()

  四、拓展提高

  有一根底面直径是6厘米,长是15厘米的圆柱体钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?

  法一:(v柱-v锥)(6÷2)2××15-(6÷2)2××15=(立方厘米)

  法二:(v柱)×(6÷2)2××15=(立方厘米)

  五、课堂小结:这节课你有哪些收获?

  板书设计

  圆锥的体积

  圆锥的体积等于和它等底等高的圆柱体积的

  v锥= sh= πr2h

  ×19×12=73(立方厘米)

  ×(4÷2)2××=(立方米)

  ×750=4710(千克)

《圆锥的体积》教案5

  教学目标

  1、结合具体情境和实践活动,了解圆锥的体积或容积的含义。进一步体会物体体积和容积的含义。

  2、经历“类比猜想一一验证说明”的探索圆锥体积计算方法的过程。掌握圆锥体积的计算方法,能正确的计算圆锥的体积,并解决一些简单的实际问题。

  3、培养学生的自主探究的能力和小组合作学习的能力。

  教学重难点、关键

  重点:圆锥的体积计算。

  难点:理解圆锥体积与圆柱体积的关系。

  关键:经历实验活动,在活动中探索并发现其中的规律。

  教具准备

  等底等高的圆柱体和圆锥体、沙子等,多媒体课件。

  教学过程

  一、情境导入

  1、师:同学们,夏天到了,美美冷饮店正在举行冰淇淋促销活动,推出两款冰淇淋:

  4元 / 杯 1元 / 杯

  2、师:老师还了解到这圆柱和圆锥是等底等高的。师:如果你现在有4元钱想去买冰淇淋的话,你认为买哪一种比较划算?

  a学生思考后同桌互相交流

  b指名汇报:

  今天我们就一起来学习:圆锥的体积。(板书课题)

  出示目标

  本节课我们的目标是:(出示)

  理解圆锥体积的计算公式推导过程,并掌握圆锥的体积计算公式,能利用公式解决实际问题。

  学生齐读。师:从大家响亮的声音中,老师相信你们肯定能学好。下面让自学指导引领我们自学。

  二、学习指导

  认真看课本第41页的例2,理解圆锥的体积推导过程,思考:

  1、等底等高的`圆柱和圆锥的体积有什么关系?

  2、圆锥的体积计算公式是什么?用字母如何表示?

  ( 8分钟后对子之间相互交流,如有疑问小组内交流)

  师:用——画出重点内容,用?表示出不懂的地方。比谁自学最认真,坐姿最端正,自学效果最好。下面自学竞赛开始!

  三、自学共探:

  1、看一看(自学探究)

  生认真地看书自学,师巡视,督促人人认真地看书。

  2、议一议(合作交流)

  针对自学探究中的问题先对子交流,还不能解决的问题可以小组讨论。

  教师在学生合作交流时巡视,观察小组交流情况,对合作不太好的小组给以帮助和提醒,促使每个组及组员都能积极参与到合作交流活动中。

  3.说一说(汇报展示自学指导中的三个问题))

  师:下面,我们比一比哪个小组展示得精彩,能为自己的小组争光添彩。用抽签的方式来决定你们组所展示的问题。

  (学生汇报时有不足或不准确的地方老师或其他成员可以及时给予补充,在各组展示之后,其他小组给与评价。)

  小组派代表来展示合作交流的成果和意见, 最后师再做借助课件总结。

  今天你们通过动手操作,合作交流,实验验证,推导出圆锥体积的计算公式,同学们之间的合作是愈来愈默契了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

  四、学情展示

  1、等底等高的圆柱和圆锥的体积有什么关系?

  2、圆锥的体积计算公式是什么?用字母如何表示?

《圆锥的体积》教案6

  教学内容:教材第20页例2、练一练。

  教学要求:使学生进-步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积公式解决-些简单的实际问题:

  教学重点:进-步掌握圆锥的体积计算方法。

  教学难点:根据不同的条件计算圆锥的体积。

  教学过程:

  一.铺垫孕伏:

  1.口算。

  2.复习体积计算。

  (1)提问:圆锥的体积怎样计算?

  (2)口答下列各圆锥的体积:①底面积3平方分米,高2分米。

  ②底面积4平方厘米,高4.5厘米。

  3.引入新课。

  今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。

  二、自主探究:

  l.教学例2。

  出示例题,让学生读题。提问:你们认为这道题要先求什么,再求这堆沙的重量?让学生说说为什么要先求体积,才能求这堆沙的重量?这里底面直径和高的'数据怎样获得?指名板演,其他学生做在练习本上,集体订正。

  2.组织练习。

  (1)做练一练。

  指名一人板演,其余学生做在练习本上,集体订正。

  (2)讨论练习三第6题:圆柱和圆锥的体积和高分别相等,那么,圆柱的底面积和圆锥的底面积有什么关系?这道题,已知圆柱底面的周长,先求出什么?在怎样?理清思路后

  学生做在练习本上。集体订正。

  (3)讨论练习三第7题。

  底面周长相等,底面积就相等吗?

  三、课堂小结

  这节课练习了圆锥的体积计算和应用:计算体积需要知道底面积和高。如果没有告诉底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算.有时候还可以计算出圆锥形物体的重量。

  四、布置作业

  1.练习三第5题及数训。

  2.出示圆锥形模型,提问:你有什么办法算山它的体积吗,需要测量哪些数据?怎样测量直径和高。请同学们回去测量你用第167页图制作的圆锥,求出它的体积来。

  3.思考练习三第8、9题。

《圆锥的体积》教案7

  教学内容:人教版第十二册第42-43页的例1、例2,完成“做一做”的第1、2题和练习九的第3-5题。

  教学目的:

  1:通过动手活动推导出圆锥的体积公式。

  2:理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

  3:培养学生的动手操作能力,观察、分析综合能力。

  教学重点:圆锥体积的计算公式。

  教学难点:圆锥体积公式的推导。

  教具准备:细沙,圆锥、圆柱教具,投影仪。

  教学过程:

  一、复习引入

  1,口答圆柱体积的计算公式。

  2,求下面各圆柱的`体积。

  (1)底面积是4平方分米,高5分米;

  (2)底面半径是2分米,高与半径相等;

  (3)底面直径6厘米,高5厘米;

  (4)底面周长6.28分米,高2分米。

  3,谈话引入课题,并出示课题。

  二、探究新知

  1,圆锥体积计算公式的推导。

  (1)请大家猜想一下,圆柱体和圆锥体的体积之间有什么关系。

  (2)下面大家利用你们准备好的圆柱体和圆锥体来做实验,验证一下你们的猜想。

  (作实验之前,先让学生讨论一下准备的圆柱体和圆锥体之间有什么样的关系。把学生分成四人一组动手操作。)

  (3)学生分组做实验,汇报实验过程和结果。

  (4)圆锥体的体积都是圆柱体体积的1/3吗?

  2,推导出公式

  指名口答,教师板书:

  圆锥体积等于等底等高的圆柱体体积的1/3。

  圆锥体积=底面积×高×1/3

  V=1/3SH

  师问:S表示什么?H表示什么?SH表示什么?1/3SH表示什么?

  3,练习(口答)

  (1)一个圆柱体积是27立方分米,与它等底等高的圆锥体积是多少立方分米?

  (2)一个圆锥体积是150立方厘米,与它等底等高的圆柱体积是多少立方厘米?

  4,运用公式

  (1)出示例一。

  一个圆锥形的零件,底面积是19平方厘米,高12厘米。这个零件的体积是多少?

  学生尝试练习,教师讲评。

  (2)出示例二。

  在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)

  学生读题思考片刻后:要求小麦重量,须先求出什么?然后学生尝试练习,个别板演,教师讲评。

  三、巩固练习

  课本第43页“做一做”第1、2题。

  学生尝试练习,个别板演,教师讲评。

  四、小结

  今天这节课,你学到了什么知识?要求圆锥的体积需要知道哪些条件?你对自己掌握的知识满意吗?你给自己打了多少分?

  五、作业

  练习九的第3-5题。

《圆锥的体积》教案8

  一、 教学内容

  九年义务教育六年制小学教科书《数学》(第一版)六年级第十二册第二单元。

  二、 教材分析

  1、内容分析:这是本单元实验探究性较强的知识点,通过学生合作探究,理解并掌握圆锥体积的计算方法,且能加以运用。

  2、教学重点:正确运用公式计算圆锥的体积,学会解决与计算圆锥形物体有关的实际问题。

  3、教学难点:理解圆锥体积公式的推导。

  三、 教学目标

  1、知识教学点:让学生通过观察、亲自动手做对比实验、分析、验证等活动,初步感知圆锥的体积计算公式的由来,能理解并加以运用。

  2、能力训练点:培养学生的观察、比较、分析、综合、概括以及初步的自主探究的能力。

  3、思想渗透点:激发学生积极探索新知和学习数学的欲望。

  四、 教、学具准备

  1、教具:量筒(2只)、圆柱和圆锥(等底等高,可装水)、红颜色的水、不规则的石块。

  2、学具:教师指导用硬塑料纸做3组可盛水的圆柱和圆锥(①等底等高 ②等底不等高 ③等高不等底)、适量的水。

  五、 教学过程

  (一) 创设探究情景,激趣引思

  1、教师行为

  (1) 谈话:同学们探究了计算圆柱体积的方法。想不想探究圆锥体积的计算方法呢?今天我们用准备好的学具试一试!

  (2) 演示实验:先出示实验器材,让学生细心观察比较;在空圆柱里装满红颜色的水,然后倒入一只量筒里;在空圆锥里装满红颜色的水,倒入另一只量筒里,像这样倒三次。

  (3) 质疑: 通过老师做实验,同学们看到了什么?想到了什么?发现了什么?有什么感想?

  2、学生活动

  (1) 听谈话,明确主题。

  (2) 细致入微地观察演示实验。

  (3) 四人小组合作讨论交流,看到的、想到的。并分组汇报讨论结果。(两只一样的量筒里水面高度一样,用空圆锥倒了三次水,空圆柱倒了一次,它们的底面大小及高度一样,两只量筒里水的体积相等、空圆锥装三次的水与空圆柱装一次的水一样多等)。

  (4) 亲自用教师演示用具验证讨论结果。

  (设计意图:通过演示实验激发学生的探究兴趣,激活学生思维。)

  (二) 提出探究假想,实践验证

  1、教师行为

  (!)启迪:老师做的实验对我们今天的探究活动有什么启发?请同学们提出自己的设想,并给予各组学生必要的指导,进行小组讨论。

  (2)综述讨论结果,提问:所有圆柱的体积都等于圆锥体积的3倍,圆锥体积都等于圆柱体积的1/3,是否正确,为什么?有什么条件限制?再让学生观察老师用的实验器具思考。

  (3)促思:同学们设想的条件哪一种正确?大家没有量筒,用你们准备的

  学具怎样才能验证假设?

  (4)合作探究:创新验证方案,怎样让它具有可操作性,教师适当点拨。

  (5)组织学生用确定的方案进行合作探究,实践验证。

  (6)诱导:修正假设,反思结果,得出结论,层层深入。

  2、学生活动

  (1)小组讨论,积极交流,达成共识。

  (2)分组汇报讨论结果:对今天的学习有帮助,假设空圆柱和空圆锥里装水的体积近似等于它们的体积;则老师所用的空圆柱的体积将等于空圆锥体积的3倍,空圆锥的体积就等于空圆柱体积的1/3。

  (3)根据问题设想条件:圆柱和圆锥、等底等高、等底不等高、等高不等底。

  (4)交流确定验证方案:分别用三组准备好的空圆锥装满水倒入空圆柱里,看哪一组装3次刚好装满。

  (5)分组实验。

  (6)汇报探究情况:等底等高的一组空圆柱和空圆锥才符合原先假设。

  (7)小结:圆柱的体积等于和它等底等高的圆锥体积的3倍;圆锥体积等于和它等底等高的圆柱体积的1/3.即

  V柱=1/3 V锥=1/3 sh=1/3 ∏r2h

  (设计意图:培养学生的分析能力和自主探究学习的能力。)

  (三)巩固探究成果,深化理解

  1、教师行为

  (1) 巩固新知:让学生计算课本例1、例2、做一做,然后集体订正。

  (2) 强调:计算圆锥体积时,最容易出现的错误是什么?

  (3) 引申练习:一个圆锥形零件,已知下列条件,分别求其体积

  ①底面半径3厘米,高15厘米;

  ②底面直径5厘米,高10厘米;

  ③底面周长12.56厘米,高10厘米;

  ④底面半径3厘米,比高少70%。

  2、学生活动

  (1)自主训练,多思多问。

  (2)总结:计算时,不能忘记特殊数字“1/3”

  (3)灵活运用公式,找出自己知识的不足。

  (设计意图:运用探究成果进行强化练习,加深对知识的理解,培养学生综合运用能力。)

  (四) 拓展探究思维,迈向生活

  1、教师行为

  质疑:

  (1)出示一个不规则滑石块,怎样求其体积?(教师作指导)

  (2)学校食堂买来一车煤炭,倒堆成圆锥体,量得其底面周长和高分别为12.56米,每立方米煤200元,结果付了1300元,问学校有没有多花钱?

  2、学生活动

  (1)分组讨论,引导得出求其体积的方法:把不规则的.物体(不吸水)放进盛水的容器里,求出上升那部分水的体积也就等于不规则物体的体积。

  (2)合作探讨明确计算方法。

  (设计意图:解决生活中的实际问题,体现“人人学有价值的数学,不同的人在数学上得到不同的发展”的新课程理念,培养学生的创新意识和实践能力。)

  教学反思:

  立足教材,根据本地区挖掘学生较熟悉的、乐于接受的、具有多方面教育价值,能引起学生思考的素材,真正实现用教材,并加以创新,让探究成功率提高,激起了学生的学习兴趣。在课堂教学中充分发挥学生的主体性,构建了“激趣引思——实践验证——深化理解——迈向生活”的教学模式,促进了学生学习方式的转变。]

  教学评析:

  教师充分利用教学用具,开发数学课程资源,让学生在探究新知的过程中,进一步发展空间观念和应用数学的能力,实现了让学生在生活中学数学、用数学的愿望。

  在教学过程中与学生积极互动,共同发展,处理好传授知识与培养能力的关系,注重培养学生的独立性和自主性,引导学生观察、质疑、探究,在实践中学习,促进学生在教师指导下主动地、富有个性的学习,以学生为本,以问题为中心,以实验探索为主要手段,以讨论为交流方式,以陈述观点及根据为要求,把学生推到了探究性学习的前台,让学生去想、去说、去做、去表达,去自我评价、去体会科学知识的真谛,促进学生全面发展。

《圆锥的体积》教案9

  1、学生通过自己的实验,非常顺利地得到等底等高的圆柱和圆锥体积之间的关系,推导出来圆锥的体积计算公式。原因之处有:(1)猜想:发挥学生的空间想象,使学生初步建立圆锥与圆柱体积之间的关系,教师预设学生可能粗略地知道有“三分之一”这一关系,“那么三分之一这一关系怎样推导呢”引起以下怎样推导圆锥的体积这一过程。

  (2)在推导过程中,带着思考题(思考题实际就是学生实验的过程),让学生带有目标进行实验,让学生更有目的性,也非常方便,有操作性。

  (3)学具准备充分,各小组选择水、沙子,增强趣味性,主动性,积极性高。

  (4)公式推导完之后的一个反例子(出示一个非常大的圆柱和一个非常小的圆锥),让学生明确并不是所有的圆锥的体积都是圆柱体积的三分之一,从而强调了等底等高。

  2、练习题由浅入深,判断题主要是要加深学生对概念、公式的运用和理解,第2题是书上的一组题,为提高效率只列式不计算,这三道题分别是告诉底面积和高、底面半径和高、底面直径和高,把几种类型都呈现出来。最后一题是动手实践题,一要考察学生的公式运用情况,二要考察学生的解决实际问题的能力及策略,虽然没做几道题,但我觉得:解决问题比什么都重要。

  3、本来想用不等底、不等高的圆柱和圆锥参与实验,考虑到可能会得出错误结论而影响体积公式的推导,所以把这一环节省去。设计了一组大的`等底等高的圆锥和圆柱,让学生明确不管大小,只要等底等高就有3倍这样的关系。

  4、时间分配上不到位,例题的处理中,考虑到本节的重点是理解公式并运用公式,所以没花多的时间,由于数字教大,部分学生没做完。

《圆锥的体积》教案10

  教学目标

  1、推导出圆锥体积的计算公式。

  2、会运用圆锥的体积公式计算圆锥的体积。

  重点难点

  圆锥体积公式的推导过程。

  教学过程

  一、板书课题

  师:同学们,今天我们来学习“圆锥的体积”(板书课题)。

  二、出示目标

  理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。

  三、自学指导

  认真看课本第33页到第34页的例2和例3,边看书,边实验,理解圆锥的体积计算方法,并将例3补充完整。想:

  1、圆锥的体积与圆柱的体积有什么关系?

  2、圆锥的.体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能正确地回答思考题并能做对检测题!

  检测题

  完成课本第34页“做一做”第1、2题。

  小组合作,校正答案

  后教

  口答

  一个体积是1413立方分米的铁块,可以制造成多少个底面半径是3分米、高是5分米的圆锥形零件?

  小组内互相说。

  当堂训练

  1、必做题:

  课本第35页第5、6、7题。(做在作业本上)

  2、选做题:

  有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)

《圆锥的体积》教案11

  【教学内容】

  圆锥的体积(1)(教材第33页例2)。

  【教学目标】

  1、参与实验,从而推导出圆锥体积的计算公式,会运用圆锥的体积公式计算圆锥的体积。

  2、培养学生初步的空间观念,让学生经历圆锥体积公式的推导过程,体验观察、比较、分析、总结、归纳的学习方法。

  【重点难点】

  圆锥体积公式的推导过程。

  【教学准备】

  同样的圆柱形容器若干,与圆柱等底等高的圆锥形容器,与圆柱不等底等高的圆锥形容器若干,沙子和水。

  【情景导入】

  1、复习旧知,作出铺垫。

  (1)教师用电脑出示一个透明的圆锥。

  教师:同学们仔细观察,圆锥有哪些主要特征呢?

  (2)复习高的概念。

  A、什么叫做圆锥的高?

  B、请一名同学上来指出用橡皮泥制作的.圆锥模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)

  2、创设情境,引发猜想。

  (1)电脑呈现出动画情境(伴图配音)。

  夏天,森林里闷热极了,小动物们都热得透不过气来。一只小白兔去“动物超市”购物,它在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(动画中圆柱形和圆锥形的雪糕是等底等高的)

  (2)引导学生围绕问题展开讨论。

  问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个怎么样?”(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)

  问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)

  问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法跟小组交流一下,再向全班同学汇报)

  过渡:小白兔究竟跟狐狸怎样交换才合理呢?学习了“圆锥的体积”后,大家就会弄明白这个问题。

  【新课讲授】

  自主探究,操作实验

  下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积之间的关系,解决电脑博士给我们提出的问题。

  出示思考题:通过实验,你们发现圆柱的体积和圆锥的体积之间有什么关系?你们的小组是怎样进行实验的?

  (1)小组实验。

  A、学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的也有5倍关系的。)

  B、同组的学生做完实验后,进行交流,并把实验结果写在黑板上。

  (2)全班交流。

  ①组织收集信息。

  学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在黑板上:

  A、圆柱的体积正好等于圆锥体积的3倍。

  B、圆柱的体积不是圆锥体积的3倍。

  c、圆柱的体积正好等于圆锥体积的8倍。

  D、圆柱的体积正好等于圆锥体积的5倍。

  E、圆柱的体积是等底等高圆锥体积的3倍。

  f、圆锥的体积是等底等高圆柱体积的。

  ②引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)

  ③参与处理信息。围绕3倍关系情况讨论:请这几个小组同学说出他们是怎样通过实验得出这一结论的?哪个小组得出的结论更科学合理一些?

  圆锥的体积是等底等高圆柱体积的。(突出等底等高,并请学生拿出实验用的器材,自己比划、验证这个结论)引导学生自主修正另外两个结论。

  (3)诱导反思。为什么有两个实验小组的结果不是3倍的关系呢?

  (4)推导公式。尝试运用信息推导圆锥的体积公式。这里的sh表示什么?为什么要乘?要求圆锥体积需要知道几个条件?

  (5)解决问题。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高,之后播放狐狸拿着圆锥形雪糕离去的画面)

  【课堂作业】

  完成教材第34页“做一做”第1题。

  先组织学生在练习本上算一算,然后指名汇报。

  答案:13×19×12=76(cm3)

  【课堂小结】

  教师:请你说说知道哪些条件就可以求圆锥的体积?学生自由交流。

  【课后作业】

  1、完成练习册中本课时的练习。

  2、教材第35页第3、4、5题。

  答案:第3题:提示:可以利用直尺、软尺等工具测量出圆锥形实物的底面直径(或者底面周长)和高,再根据V圆锥=1/3sh计算出该物体的体积。

  第4题:(1)25、12(2)423、9

  第5题:(1)×(2)√(3)×

《圆锥的体积》教案12

  教学目标:

  1.在理解圆锥体积公式的基础上,能运用公式解决有关实际问题,加深对知识的理 解。

  2.培养学生观察、实践能力。

  3.使学生在解决实际问题中感受数学与生活的密切联系。

  教学重、难点:结合实际问题运用所学的知识

  教学理念:

  1.数学源于生活,高于生活。

  2.学生动手实践,自主学习与合作交流相结合

  教学设计:

  一 回顾旧知:

  1.圆锥的体积公式是什么? S、h各表示什么?

  2.求圆锥的体积需要知道什么条件?

  3.还知道哪些条件也能计算出圆锥的体积?怎样计算?

  投影出示:

  (1)S = 10,h = 6 V = ?

  (2)r = 3,h = 10 V = ?

  (3)V = 9.42,h = 3 S = ?

  二 运用知识,解决实际问题

  1.(投影出示例2:一堆小麦图)师:有这样一堆小麦,你知道它的体积是多少吗? 怎么办呢?

  2.这些数据都是可以测量的。现在给你数据:高为1.2米,底面直径为4米

  (1)麦堆的`底面积:__________________

  (2)麦堆的体积:____________________

  3.知道了体积,这堆小麦大约有多少重能知道吗?(每立方米小麦约735千克)(得 数保留整千克数)

  4.一个圆锥形沙堆,占地面积为3.14平方米,高1.5米。(1)沙堆的体积是多少平方 米?(2)如果每立方米沙约重1.6吨,这些沙子共重多少吨?(结果保留一位小数)

  5.用一根底面直径2分米,高10分米的圆柱体木料,削成一个的圆锥,要削去多 少立方分米的木料?

  (1)(出示图)什么情况下削出的圆锥是的?为什么?

  (2)削去的木料占原来木料的几分之几?

  (3)如果这是一块长4分米,宽2分米,高1分米的长方体木料,又在什么情况下削出 的圆锥是的呢?

  三 综合练习

  1.一个圆柱的底面积为81平方厘米,高12厘米,和它等体积等底的圆锥高为( )厘米;和它等体积等高的圆锥的底面积为( )厘米。

  2.将一个体积为16立方分米的圆锥形容器盛满水,倒入一个底面积为10平方分米的 圆柱体容器中,水面的高度是( )分米

  3.一个圆柱和一个圆锥的体积相等,如果圆柱的高是圆锥的4/5,那么圆柱的底面积是 圆锥的几分之几?

《圆锥的体积》教案13

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第33—34页的例2和例3。例2是以探索圆锥的体积与和它等底等高的圆柱体积之间的关系为例,让学生在探究过程中获得数学活动经验。例3则是在例2的基础上运用圆锥的体积公式解决实际问题,丰富解决问题的策略,感受数学与生活密不可分的联系。

  (二)核心能力

  在探索圆锥的体积与和它等底等高的圆柱体积之间的关系的过程中,渗透转化思想,发展推理能力。

  (三)学习目标

  1.借助已有的知识经验,通过观察、猜测、实验,探求出圆锥体积的计算公式,并能运用公式正确地解决简单的实际问题。

  2.在圆锥体积计算公式的推导过程中,进一步理解圆锥与圆柱的联系,发展推理能力。

  (四)学习重点

  圆锥体积公式的理解,并能运用公式求圆锥的体积。

  (五)学习难点

  圆锥体积公式的推导

  (六)配套资源

  实施资源:《圆锥的体积》名师课件、若干同样的圆柱形容器、若干与圆柱等底等高和不等底等高的圆锥形容器,沙子和水

  二、教学设计

  (一)课前设计

  1.复习任务

  (1)我们学过哪些立体图形?它们的体积计算公式分别是什么?请你整理出来。

  (2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。

  设计意图:通过复习物体的体积公式以及圆锥体积的推导,深化转化思想在生活中的应用,也为圆锥体积的推导埋下伏笔。

  (二)课堂设计

  1.情境导入

  (出示沙堆)

  师:你们有办法知道这个沙堆的体积吗?

  学生自由发言,提出各种办法。

  预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等

  师:能不能像其它立体图形一样,探究出一个公式来求圆锥的体积呢?这节课我们来研究。板书课题

  设计意图:利用情境引入,激发学生求知的欲望,引出求圆锥体积公式的必要性。

  2.问题探究

  (1)观察猜想

  师:你们觉得,圆锥的体积和我们认识的哪种立体图形的体积可能有关?为什么?

  学生自由发言。

  (圆柱,圆柱的底面是圆,圆锥的底面也是圆……)

  师:认真观察,它们之间的体积会有什么关系?(出示圆柱、圆锥的教具)

  学生猜想。

  (2)操作验证

  师:圆锥的体积究竟和圆柱的体积有什么关系?请同学们亲自验证。

  实验用具:教师准备等底等高和不等底等高的各种圆柱、圆锥模具,一些水。

  实验要求:各组根据需要先上台选用实验用具,然后小组成员分工合作,做好实验数据的收集和整理。

  1号圆锥2号圆锥3号圆锥

  次数

  与圆柱是否等底等高

  学生选过实验用具后进行试验,教师巡视,发现问题及时指导,收集有用信息。

  (3)交流汇报

  ①汇报实验结果

  各组汇报实验结果。

  ②分析数据

  师:观察全班实验的数据,你能发现什么?

  (大部分实验的结果是能装下三个圆锥的水,也有两次多或四次等)

  师:什么情况下,圆柱刚好能装下三个圆锥的水?

  各组互相观察各自的圆柱和圆锥,发现只有在等底等高的情况下,圆柱的体积是与它等底等高圆锥体积的3倍。也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。

  师:是不是所有符合等底等高条件的圆柱、圆锥,它们的体积之间都具有这种关系呢?

  老师用标准教具装沙土再演示一次,加以验证。

  ③归纳小结

  师:谁能来总结一下,通过实验我们得到的结果是什么?

  (4)公式推导

  师:你能把上面的试验结果用式子表示吗?(学生尝试)

  老师结合学生的回答板书:

  圆锥的体积公式及字母公式:

  圆锥的体积=×圆柱的体积

  =×底面积×高

  S=sh

  师:在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)

  进一步强调等底等高的圆锥和圆柱才存在这种关系。

  设计意图:通过观察、猜测,让学生感知圆锥的体积与圆柱体积之间存在着一定的关系,渗透转化的思想。再通过对实验数据的分析,进一步感知圆锥的体积是和它等底等高的圆柱的体积的三分之一,在这一过程中,发展学生的推理能力。

  考查目标1、2

  (5)实践应用

  师:还记得这堆沙子吗?如果给你了它的高和底面的直径,你能算出这堆沙的体积大约是多少?如果每立方米沙子重1.5t,这堆沙子大约重多少吨?(得数保留两位小数。)

  师:要求沙堆的体积需要已知哪些条件?

  (由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

  学生试做后交流汇报。

  已知圆锥的底面直径和高,可以直接利用公式

  V=π()h来求圆锥的体积。

  师:在计算过程中我们要注意什么?为什么?

  注意要乘以,因为通过实验,知道圆锥的体积等于与它等底等高的圆柱体积的。

  3.巩固练习

  (1)填空。

  ①圆柱的体积是12m,与它等底等高的圆锥的体积是()m。

  ②圆锥的体积是2.5m,与它等底等高的圆柱的体积是()m。

  ③圆锥的`底面积是3.1m2,高是9m,体积是()m。

  (2)判断,并说明理由。

  ①圆锥的体积等于圆柱体积的。()

  ②圆锥的体积等于和它等底等高的圆柱体积的3倍。()

  (3)课本第34页的做一做。

  ①一个圆锥形的零件,底面积是19cm2,高是12cm,这个零件的体积是多少?

  ②一个用钢铸造成的圆锥形铅锤,底面直径是4cm,高是5cm。每立方厘米钢大约重7.8g。这个铅锤重多少克?(得数保留整数)

  4.课堂总结

  师:这节课你收获了什么?和大家分享一下吧!

  圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;V圆锥=V圆柱=Sh。

  (三)课时作业

  1.王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?

  答案:30÷2=15(厘米)

  ×3.14×152×30

  =235.5×30

  =7065(立方厘米)

  答:雕成的圆锥的体积是7065立方厘米。

  解析:这是一道考察学生空间思维能力的题,要在正方体里面雕一个最大的圆锥,必须满足圆锥的底面直径等于正方体的棱长,圆锥的高也要等于正方体的棱长,在实际中感受生活和数学的紧密联系,同时为下面在长方体里放一个最大的圆锥做了铺垫。考查目标1、2

  2.看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,可以怎样放?怎样放体积最大?(测量教室长12m,宽6m,高4m.先计算,再比较怎样放体积最大的圆锥体。)

  解析:这是一道开放题,有一定的难度,在考察学生对圆锥体积理解的基础上,又综合了长方体的知识,对学生的空间想象能力要求比较高。

  ①以长宽所在的面为底面做最大的圆锥,此时圆锥的高为4m,底面圆的直径为6m.

  ②以宽高所在的面为底面做最大的圆锥,此时圆锥的高为12m,底面圆的直径为4m.

  ③以长高所在的面为底面做最大的圆锥,此时圆锥的高为6m,底面圆的直径为4m.

  以上三种情况计算并加以比较,得出结论。考查目标1、2

《圆锥的体积》教案14

  教学内容:

  第25~26页,例2、例3及练习四的第3~8题。

  教学目的:

  1、过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

  2、已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

  3、过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

  教学重点:

  掌握圆锥体积的计算公式。

  教学难点:

  正确探索出圆锥体积和圆柱体积之间的关系

  教具准备:

  每生准备一组等底等高的圆柱和圆锥模具,大米,水,沙子等

  教学过程:

  一、复习

  1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

  2、圆柱体积的计算公式是什么?

  指名学生回答,并板书公式:圆柱的体积=底面积高。

  二、新课

  1、教学圆锥体积的计算公式。

  (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的.体积是通过切拼成长方体来求得的.

  (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

  (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?组织学生实验分组合作学习

  (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

  (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 )

  学生叙述实验过程并总结结论,得出计算公式

  板书:圆锥的体积= 1/3圆柱的体积=1/3 底面积高,

  字母公式:V= 1/3Sh

  2、教学练习四第3题

  这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

《圆锥的体积》教案15

  教学内容:教材第15页例2,“练一练”,练习三第6——11题。

  教学要求:使学生进一步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积解决一些简单的实际问题。

  教学过程:

  一、复习旧知

  1、口算)练习三第6题)

  2、复习体积计算

  (1)提问:圆锥的体积怎样计算?为什么圆锥体积V=sh?

  (2)口答下列各圆锥的体积。

  ①底面积3平方分米,高2发米。

  ②底面积4平方分米,高4。5分米。

  3、引入新课。

  今天这节课,我们练习圆锥体积的计算,通过练习,还要能应用圆锥体积计算的方法解决一些简单的实际问题。

  二、教学新课。

  1、教学例2

  出示例题,让学生读题。

  提问:你们认为这道题要先求什么,再求这堆沙的重量?

  指名板演,其他学生做在练习本上。

  2、组织练习

  (1)做“练一练”第1题。

  指名三人板演,其余学生思考第(1)、(2)题怎样做,把第(3)题做在练习本上。

  (2)做“练一练”第2题。

  指名一人板演,其余学生做在练习本上。

  (3)讨论练习三第11题。

  出示圆锥形模型,提问:你有什么办法算出它的`体积吗?需要测量用些数据?怎样测量直径和高。

  请同学们回去测量你用第129页图制作的圆锥,求出它的体积来。

  三、课堂小结。

  这节课练习了圆锥的体积计算和应用。计算体积需要知道底面积和高。如果没有告诉我人底面积,我们要先求半径算出底面积,再计算体积。应用圆锥体积计算,有时候还可以计算出圆锥形物体的重量。

  四、布置作业。

  课堂作业:练习三第7—9题。

  家庭作业:练习三第10、11题。

【《圆锥的体积》教案】相关文章:

[经典]圆锥的体积教案11-17

《圆锥的体积》教案08-12

《圆锥的体积》教案09-07

(通用)《圆锥的体积》教案09-07

圆锥的体积01-16

圆锥的体积教案15篇08-08

圆锥的体积教案(15篇)10-02

圆锥的体积教案(精选18篇)03-08

《圆锥的体积》说课稿08-29