高中物理教案
作为一名无私奉献的老师,时常需要编写教案,教案是教学活动的总的组织纲领和行动方案。我们应该怎么写教案呢?以下是小编精心整理的高中物理教案,仅供参考,大家一起来看看吧。

高中物理教案1
一、教材内容分析
本节学习了一种新的处理问题的方法:即根据实验数据作出图像,图像反映物理规律,这是我们通过实验探求自然规律的一要重要的基本的途径。应在学生充分预习的基础上,真正让学生自己能画出图像,并练习分析图像所代表的过程或规律。
瞬时速度概念的建立,是学生在高中阶段第一次接触“极限”的思想,如何正确地理解此概念,一方面应从平均速度的概念延伸到瞬时速度;另一方面从物体运动的s—t图象上采用无限分割的思想帮助学生理解图像的斜率表示物体的瞬时速度。
二、教学目标(知识,技能,情感态度、价值观)
1、知识与技能
(1)理解匀速直线运动的s-t图像的意义
(2)知道瞬时速度是精确描述变速运动快慢和方向的物理量
(3)理解用比值法定义物理量的方法
(4)知道公式和图像都是描述物理量之间的关系的数学工具,它们各也所长,可以相互补充。
(5)培养学生用多种手段处理问题的能力
(6)培养自主学习的能力及思维想象能力
2、过程与方法:实验讨论、启发式
3、情感、态度与价值观
(1)培养学生严肃认真的学习态度
(2)从知识是相互关联、相互补充的思想中,培养学生建立事物是相互联系的唯物主义观点。
三、学习者特征分析
高一学生男女比例相当,由于是普通高中生,抽象思维能力比较差,而且基础差,但是学生比较刻苦,学习物理的兴趣还是很浓厚。
四、教学策略选择与设计
讲授法、实验演示法、启发式,随机通达式
五、教学环境及资源准备
多媒体教室、视频、、动画、投影仪
六、教学过程
教学过程教师活动学生活动设计意图及资源准备
一、引入新课播放:刘易斯百米赛跑视频前面作业中我们已经算过的刘易斯在百米赛跑过程中每个10m内的平均速度,只能大体反映刘易斯在百米赛跑中的快慢变化情况.为了对变速运动作精确的描述,还需要引入瞬时速度的概念。
学生讨论总结:平均速度只能粗略地描述运动的快慢,不能精确地描述
为真实情境进行设计:刘易斯百米赛跑视
二、新课教学
运动物体在某一瞬间或经过某一位置时的速度,叫做瞬时速度(instantaneous velocity)。平时说到的百米赛跑运动员冲线的速度,子弹飞出枪口的速度、飞船与运载火箭分离时的速度等,都是瞬时速度。
瞬时速度的方向跟物体经过某一位置时的运动方向相同。瞬时速度的大小,叫做瞬时速率(instantaneous speed,简称速率)。汽车行驶中速度计上指示的数值就是瞬时速率(如课本P32图1—21)。
实验探究——用光电门测量瞬时速度
实验装置如课本P33图1—22,使一辆小车从一端垫高的木板上滑下,木板旁装有光电门,其中A管发出光线,B管接收光线。当固定在车上的遮光板通过光电门时,光线被阻挡,记录仪上可以直接读出光线被阻挡的时间。这段时间就是遮光板通过光电门的时间。根据遮光板的宽度Δs和测出的时间Δt,就可以算出遮光板通过光电门的平均速度(v=Δs/Δt)。由于遮光板的宽度Δs很小,因此可以认为,这个平均速度就是小车通过光电门的瞬时速度。
学生理解瞬时速度是矢量,既有大小(叫速率),又有方向(物体的运动方向)。
播放实验视频
真是情境
播放实验视频
讨论与思考(课本P33)之后学习S-T图像讨论与思考(课本P33)物体的运动情况,除了用语言文字和数学公式描述外,还可以直观地用图像来描述,给出了一辆汽车在平直公路上作匀速直线运动时在不同时刻的位移。
时间
t/s04.910.015.119.9
位移
s/m0100200300400
提问:请同学以上面图表所给出的数据,以横轴为(t)轴,纵轴为位移(s)轴,用描点法作图,看是一个什么样的.图像,s与t存在一个什么函数关系?
教师边看边指导,然后把同学所画的图像在投影仪(实物)上打出。
总结:可以看出几个点几乎都在过原点的一条直线上。s与t成正比。
提问:图像如何反映汽车运动的速度?
总结:图像的斜率反映物体运动的速度。
物理量之间的关系可以用公式来表示,也可以用图像来表示,利用图像可以比较方便地处理实验(或观测)结果,找出事物的变化规律。以后我们还会遇到更多的用图像来处理物理量之间的变化规律,所以,现在我们就要重视图像的学习。
学生模拟现场
投影仪
案例分析请把龟兔赛跑的过程粗略地用s—t图像表示出来。(提示:乌龟和兔子从同一地点出发,假定跑动过程都是匀速直线运动。)
分析与解答:
开始时,兔子的速度大,反映在图像上,是它的斜率比较大(比较陡),在同一时间内,兔子通过的位移大。接着,骄傲的兔子打瞌睡了,时间不停地流逝,兔子的位移没有变化。乌龟的速度虽然小,却一直不停地向前做匀速直线运动。等到兔子猛然醒来,发现乌龟已快接近终点了,于是,兔子以更大的速度向前奔(图像的斜率更大),可为时已晚,最后乌龟取得了胜利。(s—t图像如下图。)
学生进行讨论分析。得出结论播放龟兔赛跑的动画
教学流程图
七、教学评价设计
知识点教学目标评价方法备注
瞬时速度知道课堂检测
位移-时间图像理解课堂作业
八、帮助和总结
本节学习了一种新的处理问题的方法:即根据实验数据作出图像,图像反映物理规律,这是我们通过实验探求自然规律的一要重要的基本的途径。应在学生充分预习的基础上,真正让学生自己能画出图像,并练习分析图像所代表的过程或规律。
瞬时速度概念的建立,是学生在高中阶段第一次接触“极限”的思想,如何正确地理解此概念,一方面应从平均速度的概念延伸到瞬时速度;另一方面从物体运动的s—t图象上采用无限分割的思想帮助学生理解图像的斜率表示物体的瞬时速度。
本节教学主要采用自己动手、类比对照等方法,使图像中的物理意义便的很简单,很清楚,使学生从简单入手,激发学生的学生兴趣,多角度处理物理问题,为以后讲述图像打下较扎实的基础。
高中物理教案2
一、课堂引入
我们研究了液体和气体之间的交界面的性质——表面张力的作用,那么固体和液体之间的交界面又具有什么性质呢?我们将液体和固体之间的交界面叫做附着层。
板书:液体与固体接触的液体薄层——附着层。
下面我们通过实验来研究液体附着层的性质。
实验1:将洁净的玻璃片和石蜡块分别浸入水中,然后拿出来。观察水在玻璃片上和石蜡块上的附着情况。
学生观察并讨论,得出结论:水能够附着在玻璃片上。水不能附着在石蜡上。(教师出示图片)
教师总结:实验表明,在洁净的玻璃片上放一滴水,水能扩展形成薄层,附着在玻璃板上。这种液体附着在固体表面上的现象叫做浸润。对玻璃来说,水是浸润液体。在石蜡面上放一滴水,水不能附着在石蜡表面上,这种液体不能附着在固体表面上的现象叫做不浸润。对石蜡来说,水是不浸润液体。同一种液体,对一些固体是浸润的,而对另一些固体可以是不浸润的。
板书:
(1)液体附着在固体表面上的现象叫做浸润
(2)液体不能附着在固体表面上的现象叫做不浸润
同一种液体,对一些固体是浸润的,而对另一些固体可以是不浸润的。
浸润现象在日常生活中,我们可以经常看到:盛有液体的容器器壁附近的液面会成弯曲的形状,是由浸润或不浸润现象引起的。如果液体能浸润器壁,在接近器壁处液面向上弯曲。如果液体不浸润器壁,在接近器壁处液面向下弯曲。焊接时,熔融了的焊锡与被焊金属必须是浸润的;医药上要用脱脂棉,就是要使酒精,药液与棉花浸润;在有些物体上写字困难,是因为墨水不浸润物体;有些动物羽毛上能分泌脂肪,水就不浸润羽毛;有些矿石在冶炼前必须采用浮选矿石的措施,利用液体不浸润矿粒但浸润砂石的性质将矿粒与砂石分离开来。
下面通过实验来观察液体的一种有趣的现象——毛细现象。
二、毛细现象
板书:毛细现象
实验2:将几根内径不同的细玻璃管插入水中,观察实验现象。
学生观察并讨论:管内水面比容器里的水面高,管的内径越小,管内水面越高。
实验还表明把内径不同的细玻璃管插在汞中,管内汞面比容器里的汞面低,管的内径越小,管内汞面越低。
像这种浸润液体在细管内液面升高的现象和不浸润液体在细管内液面降低的现象,叫做毛细现象。
具有大量毛细管的物体,只要液体与该物体浸润,就能把液体吸入物体中。
教师讲解同时展示图片,毛巾吸水、砖块吸水、灯芯吸油,都是这个原因。土壤中有许多毛细管,容易将地下水吸上来,有时为了防止水分蒸发,就将地表面的土锄松,以破坏过多的毛细管。毛细现象在生理中有很大的作用,因为植物与动物的`大部分组织,都是以各种各样的细微管道连通起来的。
三、处理课后习题
四、总结
典型例题
浸润和不浸润现象
例1分别画出细玻璃管中水银柱和水柱上下表面的形状。
分析:水对玻璃是浸润物体,而水银对玻璃不浸润,画的时候要注意虚线表示的是液面。
微观解释浸润和不浸润现象
例2液体和固体接触时,附着层表面具有缩小的趋势是因为:
(1)附着层里液体分子比液体内部分子稀疏;
(2)附着层里液体分子相互作用表现为引力;
(3)附着层里液体分子相互作用表现为斥力;
(4)固体分子对附着层里液体分子的引力比液体分子之间的引力强。
分析:首先从题设中看出液体对固体来说是不浸润的,而后再对附着层液体分子的作用进行研究。在出现不浸润现象时,在附着层里出现了眼表面张力相似的收缩力,即引力。并且附着层里分子的分布,虽比起表面层要密一些,但比起液内还是要稀疏,所以附着层分子受引力比液内分子受引力要大些。因此,本题答案为(2)、(4)。
各种毛细现象
例3分别画出插入在水槽和水银槽中的细玻璃管中液柱的大概位置:
分析:水银对玻璃是不浸润的,而水对玻璃是浸润的。
解释毛细现象的成因
例4液体在毛细管中,液面上升是由于液体层分子的力和层分子间的相互作用的结果。当与上升液柱相等时,液柱就不再上升。
答案:附着层、相斥、表面层、表面张力、重力。
高中物理教案3
【学习目标】
l. 知道曲线运动中速度的方向,理解曲线运动是一种变速运动.
2.知道物体做曲线运动的条件是所受的合外力与它的速度方向不在一条直线上.
【学习重点】
1.什么是曲线运动.
2.物体做曲线运动的方向的确定.
3.物体做曲线运动的条件.
【学习难点】
物体做曲线运动的条件.
【学习过程】
1.什么是曲线的切线? 阅读教材33页有关内容,明确切线的
概念。
如图1,A、B为曲线上两点,当B无限接近A时,直线AB叫做
曲线在A点的__________ A B 图
2.速度是矢量,既有大小,又有方向,那么速度的变化包含哪几层含义?
3.质点做曲线运动时,质点在某一点的速度,沿曲线在这一点的____________。
4.曲线运动中,_________时刻在变化,所以曲线运动是__________运动,做曲线运动的物体运动状态不断发生变化。
5.如果物体所受的合外力跟其速度方向____________,物体就做直线运动。如果物体所受的合外力跟其速度方向__________________,物体就做曲线运动。
【同步导学】
1.曲线运动的特点
⑴ 轨迹是一条曲线
⑵ 曲线运动速度的方向
① 质点在某一点(或某一时刻)的速度方向是沿曲线的这一点的切线方向。
② 曲线运动的速度方向时刻改变。
⑶ 是变速运动,必有加速度
⑷ 合外力一定不为零(必受到外力作用)
例1 在砂轮上磨刀具时可以看到,刀具与砂轮接触处有火星沿砂轮的切线飞出,为什么由此推断出砂轮上跟刀具接触处的质点的速度方向沿砂轮的切线方向?
2.物体作曲线运动的条件
当物体所受的合力的方向与它的速度方向在同一直线时,物体做直线运动;当物体所
1 专心 爱心 用心
受合力的方向与它的速度方向不在同一直线上时,物体就做曲线运动.
例2 关于曲线运动,下面说法正确的是( )
A.物体运动状态改变着,它一定做曲线运动
B.物体做曲线运动,它的运动状态一定在改变
C.物体做曲线运动时,它的加速度的方向始终和速度的方向一致
D.物体做曲线运动时,它的加速度方向始终和所受到的合外力方向一致
3.关于物体做直线和曲线运动条件的进一步分析
① 物体不受力或合外力为零时,则物体静止或做匀速直线运动
② 合外力不为零,但合外力方向与速度方向在同一直线上,则物体做直线运动,当合外力为恒力时,物体将做匀变速直线运动(匀加速或匀减速直线运动),当合外力为变力时,物体做变加速直线运动。
③ 合外力不为零,且方向与速度方向不在同一直线上时,则物体做曲线运动;当合外力变化时,物体做变加速曲线运动,当合外力恒定时,物体做匀变速曲线运动。
例3.一质量为m的物体在一组共点恒力F1、F2、F3作用下而处于平衡状态,如撤去F1,试讨论物体运动情况怎样?
【巩固练习】
1.关于曲线运动速度的方向,下列说法中正确的是 ( )
A.在曲线运动中速度的方向总是沿着曲线并保持不变
B.质点做曲线运动时,速度方向是时刻改变的,它在某一点的瞬时速度的方向与这—点运动的轨迹垂直
C.曲线运动中速度的`方向是时刻改变的,质点在某一点的瞬时速度的方向就是在曲线上的这—点的切线方向
D.曲线运动中速度方向是不断改变的,但速度的大小保持不变
2.如图所示的曲线为运动员抛出的铅球运动轨迹(铅球视为质点),A、B、C为曲线上的三点,关于铅球在B点的速度方向,说法正确的是 ( )
A.为AB的方向 B.为BC的方向
C.为BD的方向 D.为BE的方向
3.物体做曲线运动的条件为 ( )
A.物体运动的初速度不为零 B.物体所受的合外力为变力
C.物体所受的合外力的方向上与速度的方向不在同一条直线上
D.物体所受的合外力的方向与加速度的方向不在同—条直线上 (第2题)
专心 爱心 用心 2
A.变速运动—定是曲线运动 B.曲线运动—定是变速运动
C.速率不变的曲线运动是匀速运动 D.曲线运动也可以是速度不变的运动
5.做曲线运动的物体,在其轨迹上某一点的加速度方向 ( )
A.为通过该点的曲线的切线方向 B.与物体在这一点时所受的合外力方向垂直
C.与物体在这一点速度方向一致 D.与物体在这一点速度方向的夹角一定不为零
6.下面说法中正确的是( )
A.做曲线运动的物体的速度方向必变化 B.速度变化的运动必是曲线运动
C.加速度恒定的运动不可能是曲线运动 D.加速度变化的运动必定是曲线运动
7.一质点在某段时间内做曲线运动,则在这段时间内( )
A.速度一定不断改变,加速度也一定不断改变; B.速度一定不断改变,加速度可以不变;
C.速度可以不变,加速度一定不断改变; D.速度可以不变,加速度也可以不变。
8.下列说法中正确的是( )
A.物体在恒力作用下不可能做曲线运动 B.物体在变力作用下一定做曲线运动
C.物体在恒力或变力作用下都可能做曲线运动
D.做曲线运动的物体,其速度方向与加速度方向一定不在同一直线上
9.如图所示,物体在恒力F作用下沿曲线从A运动到B,这时突然使它所受的力方向改变而大小不变(即由F变为-F),在此力作用下物体以后的运动情况,下列说法正确的是( )
A.物体不可能沿曲线Ba运动;
B.物体不可能沿曲线Bb运动;
C.物体不可能沿曲线Bc运动;
D.物体可能沿原曲线由B返回A。 b 10.一个做匀速直线运动的物体,突然受到一个与运动方向不在同一直线上的恒力作用时,物体运动为 ( )
A.继续做直线运动 B.一定做曲线运动
C.可能做直线运动,也可能做曲线运动 D.运动的形式不能确定
高中物理教案4
名师导航
●重点与剖析
一、自由落体运动
1.定义:物体只在重力作用下从静止开始下落的运动.
思考:不同的物体,下落快慢是否相同?为什么物体在真空中下落的情况与在空气中下落的情况不同?
在空气中与在真空中的区别是,空气中存在着空气阻力.对于一些密度较小的物体,例如降落伞、羽毛、纸片等,在空气中下落时,受到的空气阻力影响较大;而一些密度较大的物体,如金属球等,下落时,空气阻力的影响就相对较小了.因此在空气中下落时,它们的快慢就不同了.
在真空中,所有的物体都只受到重力,同时由静止开始下落,都做自由落体运动,快慢相同.
2.不同物体的下落快慢与重力大小的关系
(1)有空气阻力时,由于空气阻力的影响,轻重不同的物体的下落快慢不同,往往是较重的物体下落得较快.
(2)若物体不受空气阻力作用,尽管不同的物体质量和形状不同,但它们下落的快慢相同.
3.自由落体运动的特点
(1)v0=0
(2)加速度恒定(a=g).
4.自由落体运动的性质:初速度为零的匀加速直线运动.
二、自由落体加速度
1.自由落体加速度又叫重力加速度,通常用g来表示.
2.自由落体加速度的方向总是竖直向下.
3.在同一地点,一切物体的自由落体加速度都相同.
4.在不同地理位置处的自由落体加速度一般不同.
规律:赤道上物体的重力加速度最小,南(北)极处重力加速度最大;物体所处地理位置的纬度越大,重力加速度越大.
三、自由落体运动的运律动规
因为自由落体运动是初速度为0的匀加速直线运动,所以匀变速直线运动的基本公式及其推论都适用于自由落体运动.
1.速度公式:v=gt
2.位移公式:h= gt2
3.位移速度关系式:v2=2gh
4.平均速度公式: =
5.推论:Δh=gT2
●问题与探究
问题1 物体在真空中下落的情况与在空气中下落的情况相同吗?你有什么假设与猜想?
探究思路:物体在真空中下落时,只受重力作用,不再受到空气阻力,此时物体的加速度较大,整个下落过程运动加快.在空气中,物体不但受重力还受空气阻力,二者方向相反,此时物体加速度较小,整个下落过程较慢些.
问题2 自由落体是一种理想化模型,请你结合实例谈谈什么情况下,可以将物体下落的运动看成是自由落体运动.
探究思路:回顾第一章质点的概念,谈谈我们在处理物理问题时,根据研究问题的性质和需要,如何抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化,进一步理解这种重要的科学研究方法.
问题3 地球上的不同地点,物体做自由落体运动的加速度相同吗?
探究思路:地球上不同的地点,同一物体所受的重力不同,产生的重力加速度也就不同.一般来讲,越靠近两极,物体做自由落体运动的加速度就越大;离赤道越近,加速度就越小.
●典题与精析
例1 下列说法错误的是
A.从静止开始下落的物体一定做自由落体运动
B.若空气阻力不能忽略,则一定是重的物体下落得快
C.自由落体加速度的方向总是垂直向下
D.满足速度跟时间成正比的下落运动一定是自由落体运动
精析:此题主要考查自由落体运动概念的理解,自由落体运动是指物体只在重力作用下从静止开始下落的运动.选项A没有说明是什么样的.物体,所受空气阻力能否忽略不得而知;选项C中自由落体加速度的方向应为竖直向下,初速度为零的匀加速直线运动的速度都与时间成正比,但不一定是自由落体运动.
答案:ABCD
例2 小明在一次大雨后,对自家屋顶滴下的水滴进行观察,发现基本上每滴水下落的时间为1.5 s,他由此估计出自家房子的大概高度和水滴落地前瞬间的速度.你知道小明是怎样估算的吗?
精析:粗略估计时,将水滴下落看成是自由落体,g取10 m/s2,由落体运动的规律可求得.
答案:设水滴落地时的速度为vt,房子高度为h,则:
vt=gt=10×1.5 m/s=15 m/s
h= gt2= ×10×1.52 m=11.25 m.
绿色通道:学习物理理论是为了指导实践,所以在学习中要注重理论联系实际.分析问题要从实际出发,各种因素是否对结果产生影响都应具体分析.
例3 一自由下落的物体最后1 s下落了25 m,则物体从多高处自由下落?(g取10 m/s2)
精析:本题中的物体做自由落体运动,加速度为g=10 N/kg,并且知道了物体最后1 s的位移为25 m,如果假设物体全程时间为t,全程的位移为s,该物体在前t-1 s的时间内位移就是s-25 m,由等式h= ggt2和h-25= g(t-1)2就可解出h和t.
答案:设物体从h处下落,历经的时间为t.则有:
h= gt2 ①
h-25= g(t-1)2 ②
由①②解得:h=45 m,t=3 s
所以,物体从离地45 m高处落下.
绿色通道:把物体的自由落体过程分成两段,寻找等量
高中物理教案5
教学目标
知识与技能
1、知道时间和时刻的区别和联系。
2、理解位移的概念,了解路程与位移的区别。
3、知道标量和矢量,知道位移是矢量,时间、时刻和路程是标量。
4、能用数轴或一维直线坐标表示时刻和时间、位置和位移。
5、知道时刻与位置、时间与位移的对应关系。
过程与方法
1、围绕问题进行充分的讨论与交流,联系实际引出时间、时刻、位移、路程等,要使学生学会将抽象问题形象化的。处理方法。
2、会用坐标表示时刻与时间、位置和位移及相关方向
3、会用矢量表示和计算质点位移,用标量表示路程。
情感态度与价值观
1、通过时间位移的学习,要让学生了解生活与物理的关系,同时学会用科学的思维看待事实。
2、通过用物理量表示质点不同时刻的不同位置,不同时间内的不同位移(或路程)的体验,领略物理方法的奥妙,体会科学的力量。
3、养成良好的思考表述习惯和科学的价值观。
4、从知识是相互关联、相互补充的思想中,培养同学们建立事物是相互联系的唯物主义观点。
教学重难点
教学重点
1、时间和时刻的概念以及它们之间的区别和联系
2、位移的概念以及它与路程的区别。
教学难点
1、帮助学生正确认识生活中的时间与时刻。
2、理解位移的概念,会用有向线段表示位移。
教学工具
教学课件
多媒体课件
教学过程
[引入新课]
师:上节课我们学习了描述运动的几个概念,大家想一下是哪几个概念?
生:质点、参考系、坐标系。
师:大家想一下,如果仅用这几个概念,能不能全面描述物体的运动情况?
生:不能。
师:那么要准确、全面地描述物体的运动,我们还需要用到哪些物理概念?
一部分学生可能预习过教材,大声回答,一部分学生可能忙着翻书去找。
师指导学生快速阅读教材第一段,并粗看这节课的黑体字标题,提出问题:要描述物体的机械运动,本节课还将从哪几个方面去描述?
生通过阅读、思考,对本节涉及的概念有个总体印象,知道这些概念都是为了进一步描述物体的运动而引入的,要研究物体的运动还要学好这些基本概念。
引言:宇宙万物都在时间和空间中存在和运动。我们每天按时上课、下课、用餐、休息。从幼儿园、小学、中学,经历一年又一年,我们在时间的长河里成长。对于时间这个名词,我们并不陌生,你能准确说出时间的含义吗?物体的任何机械运动都伴随着物体在空间中位置的改变,你们用什么来量度物体位置的改变呢?这就是我们今天要研究的课题--§1.2时间和位移。
[新课教学]
一、时刻和时间间隔
[讨论与交流]
指导学生仔细阅读“时刻和时间间隔”一部分,然后用课件投影展示本校作息时间表。
师:同时提出问题;
1、结合教材,你能列举出哪些关于时间和时刻的说法?
2、观察教材第14页图1.2-1,如何用数轴表示时间?
学生在教师的指导下,自主阅读,积极思考,然后每四人一组展开讨论,每组选出代表,发表见解,提出问题。
生:我们开始上课的“时间”:8:00就是指的时刻;下课的“时间”:8:45也是指的时刻。这样每个活动开始和结束的那一瞬间就是指时刻。
生:我们上一堂课需要45分钟,做眼保健操需要5分钟,这些都是指时间间隔,每一个活动所经历的一段时间都是指时间间隔。
师:根据以上讨论与交流,能否说出时刻与时间的概念。
教师帮助总结并回答学生的提问。
师:时刻是指某一瞬时,时间是时间间隔的简称,指一段持续的时间间隔。两个时刻的间隔表示一段时间。
让学生再举出一些生活中能反映时间间隔和时刻的实例,并让他们讨论。
教师利用课件展示某一列车时刻表,帮助学生分析列车运动情况。
(展示问题)根据下列“列车时刻表”中的数据,列车从广州到长沙、郑州和北京西站分别需要多长时间?
T15站名T16
18:19北京西14:58
00:35 00:41郑州08:42 08:36
05:49 05:57武昌03:28 03:20
09:15 09:21长沙23:59 23:5l
16:25广州16:52
参考答案:6小时59分、15小时50分、22小时零6分。
(教师总结)
师:平常所说的“时间”,有时指时刻,有时指时间间隔,如有人问你:“你们什么时间上课啊?”这里的时间是指时间间隔吗?
生:不是,实际上这里的时间就是指的时刻。
师:我们可以用数轴形象地表示出时刻和时间间隔。
教师课件投放教材图1.2-1所显示的问题,将其做成F1ash动画。
学生分组讨论,然后说说怎样用时间轴表示时间和时刻。
生:时刻:在时间坐标轴上用一点来表示时刻。时间:两个时刻的间隔表示一段时间。一段时间在时间坐标轴上用一线段表示。
师:为了用具体数字说明时间,必须选择某一时刻作为计时起点,计时起点的选择是人为的。单位秒(s)
师:下图1-2-1给出了时间轴,请你说出第3秒,前3秒,第3秒初第3秒末,第n秒的意义。
答:
1、学习了时间与时刻,蓝仔、红孩、紫珠和黑柱发表了如下一些说法,正确的是…( )
A、蓝仔说,下午2点上课,2点是我们上课的时刻
B、红孩说,下午2点上课,2点是我们上课的时间
C、紫珠说,下午2点上课,2点45分下课,上课的时刻是45分钟
D、黑柱说,2点45分下课,2点45分是我们下课的时间
答案:A
2、关于时刻和时间,下列说法中正确的是( )
A、时刻表示时间较短,时间表示时间较长B、时刻对应位置,时间对应位移
C、作息时间表上的数字表示时刻D、1 min内有60个时刻
答案:BC
解析:紧扣时间和时刻的定义及位置、位移与时刻、时间的关系,可知B、C正确,A错。一段时间内有无数个时刻,因而D错。
以下提供几个课堂讨论与交流的例子,仅供参考。
[讨论与交流]:我国在20xx年10月成功地进行了首次载人航天飞行。10月15日09时0分,“神舟”五号飞船点火,经9小时40分50秒至15日18时40分50秒,我国宇航员杨利伟在太空中层示中国国旗和联合国旗,再经11小时42分10秒至16日06时23分,飞船在内蒙古中部地区成为着陆。在上面给出的时间或时刻中,哪些指的是时间,哪些又指的是时刻?
参考答案:这里的“10月15日09时0分”、“15日18时40分50秒”和“16日06时23分”,分别是指这次航天飞行点火、展示国旗和着陆的时刻,而“9小时40分50秒”和“11小时62分10秒”分别指的是从点火到展示国旗和从展示国旗到着陆所用的时间。
二、路程和位移
(情景展示)中国西部的塔克拉玛干沙漠是我国的沙漠,在沙漠中,远眺不见边际,抬头不见飞鸟。沙漠中布满了100~200m高的沙丘。像大海的巨浪,人们把它称为“死亡之海”。
许多穿越这个沙漠的勇士常常迷路,甚至因此而丧生。归结他们失败的原因都是因为在沙漠中搞不清这样三个问题:我在哪里?我要去哪里?选哪条路线?而这三个问题涉及三个描述物体运动的物理量:位置、位移、路程。
师:(投影中国地图)让学生思考:从北京到重庆,观察地图,你有哪些不同的选择?这些选择有何相同或不同之处?
生:从北京到重庆,可以乘汽车,也可以乘火车或飞机,还可以中途改变交通工具。选择的路线不同,运动轨迹不同,但就位置变动而言,都是从北京来到了重庆。
师:根据上面的学习,你能给出位移及路程的定义吗?
生:位移:从物体运动的起点指向运动的终点的有向线段。位移是表示物体位置变化的物理量。国际单位为米(m)、
路程:路程是质点实际运动轨迹的长度。(板)
在坐标系中,我们也可以用数学的方法表示出位移。
实例:质点从A点运动到B点,我们可以用有方向的线段来表示位移,从初始位置A向末位置B画有向线段,展示教材图1.2-3、
[讨论与交流]
请看下面的一段对话,找出里面的`哪些语言描述了位置,哪些语言描述了位置的变动。哪些是指路程,哪些是指位移。
甲:同学,请问红孩去哪里了?
乙:他去图书室了,五分钟前还在这儿。
甲:图书室在哪儿?
乙指着东北的方向说:在那个方位。
甲:我还是不知道怎么走过去,有最近的路可去吗?
乙:你可以从这儿向东到孔子像前再往北走,就能看见了。
丙加入进来,说道;也可以先向北走,再向东,因为那边有好风景可看。
甲:最近要多远?
乙:大概要三百米吧。
丙开玩笑说;不用,你如果能从索道直线到达也就是一百米。
乙:别骗人了,哪有索道啊!
丙:我是开玩笑的,那只好辛苦你了,要走曲线。
甲:谢谢你们两位,我去找他了。
学生分组讨论后,选代表回答问题。
生1:乙手指的方向--东北,就是甲在找红孩的过程中发生的位移的方向。
生2:里面的三百米是指路程,一百米的直线距离是指位移的大小。
生3:他们谈话的位置和图书室是两个位置,也就是甲在找红孩过程中的初末位置。
请你举出生活中更常见的例子说明路程和位移。(围绕跑道跑一圈的位移和路程)
[讨论与思考]
1、(用课件展示中国地图)在地图上查找上海到乌鲁木齐的铁路。请根据地图中的比例尺估算一下,坐火车从上海到乌鲁木齐的位移和经过的路程分别是多少?
阅读下面的对话:
甲:请问到市图书馆怎么走?
乙:从你所在的市中心向南走400 m到一个十字路口,再向东走300m就到了。
甲:谢谢!
乙:不用客气。
请在图1-2-3上把甲要经过的路程和位移表示出来。
师:请你归纳一下:位移和路程有什么不同?
生1:位移是矢量,有向线段的长度表示其大小,有向线段的方向表示位移的方向。
生2:质点的位移与运动路径无关,只与初位置、末位置有关。
生3:位移与路程不同,路程是质点运动轨迹的长度,路程只有大小没有方向,是标量。
教师提出问题
师:位移的大小有没有等于路程的时候?
学生讨论后回答,并交流自己的看法。
生:在直线运动中,位移的大小就等于路程。
教师适时点拨,画一往复直线运动给学生讨论。
生:在单方向的直线运动中,位移的大小就等于路程。
教师总结
师:只有在单向直线运动中,位移的大小才等于路程,在其他情况中,路程要大于位移的大小。
[课堂训练]
下列关于位移和路程的说法中,正确的是………………( )
A位移大小和路程不一定相等,所以位移才不等于路程
B位移的大小等于路程,方向由起点指向终点
C位移描述物体相对位置的变化,路程描述路径的长短
D位移描述直线运动,路程描述曲线运动
答案:C
解析:A选项表述的因果关系没有意义,故A错。位移的方向可以用从初位置指末位置的有向线段来表示,但位移的大小并不等于路程,往往是位移的大小小于等于路程,故选项B错。位移和路程是两个不同的物理量,位移描述物体位置的变化,路程描述物体运动路径的长短,所以选项C正确。位移的大小和路程不一定相等,只有当物体做单向直线运动时,位移的大小才等于路程。无论是位移还是路程都既可以描述直线运动,也可以描述曲线运动,故选项D也是错误的。
三、矢量和标量
师:像位移这样的物理量,既有大小又有方向,我们以前学过的物理量很多都只有大小,没有方向,请同学们回忆并说给大家听听。
学生讨论后回答
生:温度、质量、体积、长度、时间、路程。
对于讨论中学生可能提出这样的问题,像电流、压强这两个学生学过的物理量,它们是有方向的,但它们仍然是标量。这在以后的学习中会更进一步加深对矢量和标量的认识。
学生阅读课文后,说说矢量和标量的算法有什么不同。
生:两个标量相加遵从算术加法的法则。
[讨论与思考]
一位同学从操场中心A出发,向北走了40 m,到达C点,然后又向东走了30 m,到达B点。用有向线段表明他第一次、第二次的位移和两次行走的合位移(即代表他的位置变化的最后结果的位移)、三个位移的大小各是多少?你能通过这个实例总结出矢量相加的法则吗?
解析:画图如图1-2-4所示。矢量相加的法则是平行四边形法则。
[讨论与思考]
气球升到离地面80m高空时,从气球上掉下一物体,物体又上升了10 m高后才开始下落,规定向上方向为正方向。讨论并回答下列问题,体会矢量的表示方向。
(1)物体从离开气球开始到落到地面时的位移大小是多少米?方向如何?
(2)表示物体的位移有几种方式?其他矢量是否都能这样表示?注意体会“+”“-”号在表示方向上的作用。
解析:
(1)一80m,方向竖直向下;
(2)到现在有三种:语言表述法,如“位移的大小为80m,方向竖直向下”;矢量图法;“+”“一”号法,如“规定竖直向上为正方向,则物体的位移为一80m”。
[课堂训练]
(播放1 500m比赛的录像片断)
在标准的运动场上将要进行1 500米赛跑,上午9时20分50秒,发令枪响,某运动员从跑道上最内圈的起跑点出发,绕运动场跑了3圈多,到达终点,成绩是4分38秒。请根据上面的信息讨论以下问题,并注意题中有关时间、时刻、路程、位置变化的准确含义。
(1)该运动员从起跑点到达终点所花的时间是多少?(4分38秒)起跑和到达的时刻分别是多少?(上午9时20分50秒、上午9时25分28秒)
(2)该运动员跑过的路程是多少?(1 500米)他的位置变化如何?(起跑点到终点的连线)
四、直线运动的位置和位移
提出问题:我们怎样用数学的方法描述直线运动的位置和位移?
如果物体做的是直线运动,运动中的某一时刻对应的是物体处在某一位置,如果是一段时间,对应的是这段时间内物体的位移。
如图1-2-6所示,物体在时刻t1处于“位置”x1,在时刻t2运动到“位置”x2
那么(x2- x1)就是物体的“位移”,记为Δx =x2- x1
可见,要描述直线运动的位置和位移,只需建立一维坐标系,用坐标表示位置,用位置坐标的变化量表示物体位移。
在一维坐标系中,用正、负表示运动物体位移的方向。如图1-2-7所示汽车A的位移为负值,B的位移则为正值。表明汽车B的位移方向为x轴正向,汽车A的位移方向为x轴负向。
课后小结
时间和时刻这两个概念是同学们很容易混淆的,同学们要掌握时间坐标轴。在时间轴上,用点表示时刻,用线段表示一段时间间隔。位移和路程是两个不同的物理量,位移是用来表示质点变动的,它的大小等于运动物体初、末位置间的距离,它的方向是从初位置指向末位置,是矢量;而路程是物体实际运动路径的长度,是标量。只有物体做单向直线运动时,其位移大小才和路程相等,除此以外,物体的位移的大小总是小于路程。找位移的办法是从初位置到末位置间画有向线段。有向线段的方向就是位移的方向,有向线段的长度就是位移的大小。时刻对应位置,时间对应位移。在位置坐标轴上,用点来表示位置,用有向线段来表示位移。
本节课用到的数学知识和方法:用数轴来表示时间轴和位移轴,在时间轴上,点表示时刻,线段表示时间间隔。要选计时起点(零时刻),计时起点前的时刻为负,计时起点后的时刻为正;在位移轴上,点表示某一时刻的位置,线段表示某段时间内的位移。要选位置参考点(位置零点),直线运动中,可选某一单一方向作为正方向,朝正方向离开参考点的位置都为正,朝负方向离开参考点的位置都为负。位移方向与规定方向相同时为正,相反时为负。标量遵从算术加法的法则,矢量遵从三角形定则(或平行四边形定则,以后会学到,不让学生知道)、
课后习题
教材第16页问题与练习。
高中物理教案6
研究性实验:(1) 研究匀变速运动练习使用打点计时器:
1.构造:见教材。
2.操作要点:接50HZ,4---6伏的交流电 S1 S2 S3 S4
正确标取记:在纸带中间部分选5个点 。T 。T 。 T 。 T 。
3.重点:纸带的分析 0 1 2 3 4
a.判断物体运动情况:
在误差范围内:如果S1=S2=S3=......,则物体作匀速直线运动。
如果?S1=?S2=?S3= .......=常数, 则物体作匀变速直线运动。
b.测定加速度:
公式法: 先求?S,再由?S= aT2求加速度。
图象法: 作v-t图,求a=直线的斜率
c.测定即时速度: V1=(S1+S2)/2T V2=(S2+S3)/2T
测定匀变速直线运动的加速度:
1.原理::?S=aT2
2.实验条件:
a.合力恒定,细线与木板是平行的。
b.接50HZ,4-6伏交流电。
3.实验器材:电磁打点计时器、纸带、复写纸片、低压交流电源、小车、细绳、一端附有滑轮的长木板、刻度尺、钩码、导线、两根导线。
4.主要测量:
选择纸带,标出记数点,测出每个时间间隔内的位移S1、S2、S3 。。。。图中O是任一点。
5. 数据处理: 0 1 2 3 4 5 6
根据测出的S1、S2、S3....... 。S1 。S2 。 S3 。S4 。 S5 。 S6 。
用逐差法处理数据求出加速度:
S4-S1=3a1T2 , S5-S2=3a2T2 , S6-S3=3a3T2
a=(a1+a2+a3)/3=(S4+S5+S6- S1-S2-S3)/9T2
测匀变速运动的即时速度:(同上)
(2) 研究平抛运动
1.实验原理:
用一定的方法描出平抛小球在空中的轨迹曲线,再根据轨迹上某些点的位置坐标,由h=求出t,再由x=v0t求v0,并求v0的平均值。
2.实验器材:
木板,白纸,图钉,未端水平的'斜槽,小球,刻度尺,附有小孔的卡片,重锤线。
3.实验条件:
a. 固定白纸的木板要竖直。
b. 斜槽未端的切线水平,在白纸上准确记下槽口位置。
c.小球每次从槽上同一位置由静止滑下。
(3) 研究弹力与形变关系
方法归纳:
(1)用悬挂砝码的方法给弹簧施加压力
(2)用列表法来记录和分析数据(如何设计实验记录表格)
(3)用图象法来分析实验数据关系
步骤:
1以力为纵坐标、弹簧伸长为横坐标建立坐标系
2根据所测数据在坐标纸上描点
3按照图中各点的分布和走向,尝试作出一条平滑的曲线(包括直线)
4以弹簧的伸重工业自变量,写出曲线所代表的函数,首先尝试一次函数,如不行则考虑二次函数,如看似象反比例函数,则变相关的量为倒数再研究一下是否为正比关系(图象是否可变为直线)----化曲为直的方法等。
5解释函数表达式中常数的意义。
2. 注意事项:所加砝码不要过多(大)以免弹簧超出其弹性限度
高中物理教案7
知识目标
(1)伽利略理想实验;
(2)惯性概念;
(3)掌握牛顿第一定律的内容;
(4)理解力是改变物体运动状态的原因;
(5)能用牛顿第一定律解释惯性现象.
能力目标
培养学生严谨的逻辑推理能力;培养学生的口头表达能力.学习科学的实验方法.
情感目标
对任何现象的发生不能够想当然,要有严谨、认真的科学态度.
教学建议
教材分析
本节内容是分两块内容介绍的,先是介绍了人类对力和运动关系的发展历史,并着重讲述了伽俐略的理想实验及其重要的实验思想.然后引入了牛顿第一定律,引入了惯性概念,并由此分析出力不是维持物体速度的原因,而是改变物体速度的原因.
教法建议
1、本节所述内容在初中课本上已涉及到,初中课本中用到的标题是惯性定律,所以学生已有一定的基础.
2、适当介绍一些学史的.知识,让学生意识到:一个规律的发现并不是一帆风顺的,或者是一开始的认识就是对的,而是需要人类不断探索才能形成的,它们的学习也是这样.
3、重点讲述伽利略理想实验的科学思想,让学生学会一种科学思维方法.
4、通过对大量实例的分析,让学生真正理解力不是维持物体速度的原因,而是改变物体速度的原因.
教学设计示例
教学重点:对伽利略理想实验的理解;牛顿第一运动定律.
教学难点:对伽利略理想实验的理解.
示例:
一、历史的回顾
1、人类对力和运动关系的最初认识及亚里士多德其人.(见扩展资料)
2、伽利略理想实验:
(1)动画模拟该实验,并指出不能够真正试验的原因.或做课本所讲的气垫导轨实验(有视频资料),并指出为什么只是近似验证.由实验结果推出亚里士多德观点的错误,矛盾的焦点蚀是试实验条件的不同.
(2)分析伽利略理想实验:它是一个理想化的过程,但并不是凭空想象的来的,而在抽象思维过程中所创造出的一种科学推理,理想化实验是物理学中重要的研究方法.
(3)介绍伽利略.
二、牛顿第一运动定律
1、牛顿第一运动定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.
2、惯性:物体保持原来的匀速直线运动或静止状态的性质.
3、注意:(通过实例分析)
(1)惯性与惯性定律不同.
(2)惯性是物体的固有性质,任何时候物体都具有惯性,这与物体处于什么状态无关.
(3)力和运动的关系:力不是维持物体速度的原因,而是改变物体速度的原因.
4、实例参考(要让学生充分参与讨论):
分析刹车时人往前倾;启动时人往后仰.
做小实验:惯性实验器演示惯性现象,并分析.
让学生举例分析,并指出哪些惯性现象有利,哪些惯性现象有害.
探究活动
题目:可以观察的惯性现象
组织:小组或个人
方案:自己设计小实验并展示、讲解,由同学互相评判
评价:具有可操作性,让学生把学过的知识灵活应用
高中物理教案8
一、教学目标
知识与技能:
1、理解力的分解概念。
2、知道力的分解是合成的逆运算,并知道力的分解遵循平行四边形定则。
3、学会按力的实际作用效果分解力。
4、学会用力的分解知识解释一些简单的物理现象。
过程与方法:
1、通过生活情景的再现和实验模拟体会物理与实际生活的密切联系。
3、通过对力的实际作用效果的分析,理解按实际作用效果分解力的意义,并感受具体问题具体分析的方法。情感、态度与价值观:
1、通过联系生活实际情景,激发求知欲望和探究的兴趣。
2、通过对力的分解实际应用的分析与讨论,养成理论联系实际的自觉性,培养解决生活实际问题的能力。
二、教学重点难点
教学重点:理解力的分解的概念,利用平行四边形定则按力的作用效果进行力的分解。
教学难点:力的实际作用效果的分析。
三、教学过程
(一)引入:
1、观察一幅打夯的图片,分析为什么需要那么多人一起打夯。
2、模拟打夯,指出用多个力的共同作用来代替一个力的作用的实际意义,突出等效替代的思想。
3、引出力的分解的概念:把一个力分解成几个分力的方法叫力的分解。
(二)一个力可分解为几个力?
由打夯的例子可以看出一个力的作用可以分解为任意几个力,最简单的情况就是把一个力分解为两个力。
(三)一个力分解成两个力遵循什么规则?
力的分解是力的合成的逆运算,因此把一个力分解为两个分力也遵循平行四边形定则。
(四)力的分解实例分析
以一个力为对角线作平行四边形可以作出无数个平行四边形,因此把一个力分解为两个力有无数组解,但如果已知两个分力的方向,那力的分解就只有唯一解了。如何确定两个分力的方向呢?在解决实际问题时要根据力的实际作用效果确定分力的方向。
一、斜面上重力的分解
[演示]用薄塑料片做成斜面,将物块放在斜面上,斜面被压弯,同时物块沿斜面下滑.
[结论]重力G产生两个效果:使物体沿斜面下滑和压紧斜面.
[分析]重力的两个分力大小跟斜面的倾斜角有何关系?
[结论]通过作图和实验演示可看出倾角越大,下压分力越小而下滑分力越大。
[问题]游乐场的滑梯为什么倾角很大?山路为什么要修成盘山状?
[分析]斜面倾角越大,使物体下滑的力越大,物体越容易下滑,故公园滑梯倾角较大,但山路若直接从山脚往山顶修,则倾角太大,车辆上坡艰难而下坡又不安全,是不可行的,修成盘山状则可解决这个问题。
二、直角支架所受拉力的分解
[实验模拟]同学甲用一手撑腰,同学乙用力向下拉甲同学的肘部,让同学谈体会,即分析向下拉肘部的力产生的作用效果。
[实验演示]在支架上挂一重物,观察橡皮膜的变化,分析重物对支架的拉力产生的作用效果。
[分析]支架所受拉力一方面挤压水平杆,另一方面拉伸倾斜杆。
[分解]按效果分解拉力并作出平行四边形法。
三、劈木柴刀背上力的分解
[观察图片]为什么一斧头下去,木桩被劈开了?作用在斧头上的力实际产生了什么效果?
[小实验]同学甲双手合十,同学乙用一只手试图从甲的两手中间劈下去,体会手上的感觉。
[分析]乙同学的手向两侧挤压甲同学的两只手,因此刀背上的力的'作用效果也是使得刀的两个侧面去挤压木柴。
[分解]按力的作用效果分解刀背上的力,作出平行四边形,并比较分力与合力的大小关系。
[思考]由生活经验可知砍柴的刀越锋利越容易把柴劈开,为什么?分析分力大小跟分力夹角的关系。
[体验]通过小实验体会在合力一定的情况下,分力大小随其夹角变化而变化的规律:
○用一根羊绒线,中间吊一个砝码,观察当抓住线的两手距离不断增大时线有何变化。
○用两个弹簧秤共同拉一个砝码,拉的夹角逐渐增大,观察弹簧秤示数的变化。
[规律总结]在合力一定的情况下,对称分布的两个分力的夹角越大,分力越大。
[应用]
○如何把陷进泥潭的汽车拉出来?
○如何移动一只很重的箱子?
(五)小结:
1、知道什么叫力的分解
2、知道力的分解遵循平行四边形定则
3、掌握在解决实际问题时按力的实际作用效果分解的方法。
高中物理教案9
教学目标:
1、理解麦克斯韦电磁场理论的两个支柱:变化的磁场产生电场、变化的电场产生磁场。了解变化的电场和磁场相互联系形成同一的电磁场。
2、 了解电磁场在空间传播形成电磁波。
3、 了解麦克斯韦电磁场理论以及赫兹实验在物理学发展中的贡献。体会两位科学家研究物理问题的思想方法。
教学过程:
一、伟大的预言
说明:法拉第发现电磁感应现象那年,麦克斯韦在苏格兰爱丁堡附近诞生,从小就表现出了惊人的数学和物理天赋,他从小热爱科学,喜欢思考,1854年从剑桥大学毕业后,精心研读了法拉第的著作,法拉第关于“场”和“力线”的思想深深吸引了麦克斯韦,但麦克斯韦也发现了法拉第定性描述的弱点,那就是不能定量的描述电场和磁场的关系。因此,这位初出茅庐的科学家决定用他的数学才能来弥补。1860年初秋,麦克斯韦特意去拜访法拉第,两人虽然在年龄上相差四十岁,在性情、爱好、特长方面也迥然各异,可是对物质世界的看法却产生了共鸣。法拉第鼓励麦克斯韦:“你不应停留在数学解释我的观点”,而应该突破它。
说明:麦克斯韦学习了库仑、安培、奥斯特、法拉第、亨利的研究成果,结合了自己的创造性工作,最终建立了经典电磁场理论。
说明:法拉第电磁感应定律告诉我们:闭合线圈中的磁通量发生变化就能产生感应电流,我们知道电荷的定向移动形成电流,为什么会产生感应电流呢?一定是有了感应电场,因此,麦克斯韦认为,这个法拉第电磁感应的实质是变化的磁场产生电场,电路中的电荷就在这个电场的作用下做定向移动,产生了感应电流。即使变化的磁场周围没有闭合电路,同样要产生电场。变化的磁场产生电场,这是一个普遍规律
说明:自然规律存在着对称性与和谐性,例如有作用力就有反作用力。既然变化的磁场能够产生电场,那么变化的电场能否产生磁场呢?麦克斯韦大胆地假设,变化的电场能够产生磁场。
问:什么现象能够说明变化的电场能够产生磁场?(例如通电螺线管中的电流发生变化,那么螺线管内部的磁场要发生变化)
说明:根据这两个基本论点,麦克斯韦推断:如果在空间在空间某区域中有不均匀变化的电场,那么这个变化的电场能够引起变化的磁场,这个变化的磁场又引起新的变化的电场.........这样变化的电场引起变化的磁场,变化的磁场又引起变化的电场,变化的电场和磁场交替产生,由近及远传播就形成了电磁波。
二、电磁波
问:在机械波的横波中,质点的振动方向和波的`传播方向之间有何关系?(两者垂直)
说明:根据麦克斯韦的理论,电磁波中的电场强度和磁感应强度互相垂直,而且两者均与电磁波的传播方向垂直,电磁波是横波。
问:电磁波以多大的速度传播呢?(以光速C传播)
问:在机械波中是位移随时间做周期性变化,在电磁波中是什么随时间做周期性变化呢?(电场强度E和磁感应强度B)
三、赫兹的电火花
说明:德国科学家赫兹证明了麦克斯韦关于电磁场的理论
板书设计
一、伟大的预言
1、变化的磁场产生电场
变化的电场产生磁场
2、变化的电场和磁场交替产生,由近及远传播形成电磁波
二、电磁波
1、电磁波是横波,E和B互相垂直,而且两者均与电磁波的传播方向垂直÷
2、电磁波以光速C传播)
3、电磁波中电场强度E和磁感应强度B随时间做周期性变化
三、赫兹的电火花
赫兹证明了麦克斯韦关于电磁场的理论
高中物理教案10
一、预习目标
预习“光的干涉”,初步了解产生光的明显干涉的条件以及出现明暗条纹的规律。
二、预习内容
1、 请同学们回顾机械波的干涉现象 以及产生的条件 ;
2、 对机械波而言,振动加强的点表明该点是两列波的 ,该点的位移随时间 (填变化或者不变化);振动减弱的点表明该点是两列波的 ;
3、 不仅机械波能发生干涉,电磁波等一切波都能发生干涉,所以光若是一种波,则光也应该能发生干涉
4、 相干光源是指:
5、 光的干涉现象:
6、 光的干涉条件是:
7、 杨氏实验证明:
8、 光屏上产生亮条纹的条件是
;光屏上产生暗条纹的条件是
9、 光的干涉现象在日常生活中很少见的,这是为什么?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1.说出什么叫光的干涉
2.说出产生明显干涉的条件
3.准确记忆产生明暗条纹的规律
学习重难点:产生明暗条纹规律的理解
二、学习过程
(一)光的干涉
探究一:回顾机械波的干涉
1.干涉条件:
2.干涉现象:
3.规律总结
探究二:光的干涉条件及出现明暗条纹的规律
1.光产生明显干涉的条件是什么?
2.产生明暗条纹时有何规律:
(1)两列振动步调相同的光源:
(2)两列振动步调正好相反的光源:
(三)课堂小结
(四)当堂检测
1、 在杨氏双缝实验中,如果 ( BD )
A、 用白光做光源,屏上将呈现黑白相间的.条纹
B、 用红光做光源,屏上将呈现红黑相间的条纹.
C、 用红光照射一条狭缝,用紫光照射另一条狭缝,屏上将呈现彩色条纹
D、 用紫光作为光源,遮住其中一条狭缝,屏上将呈现间距不等的条纹.
2、20xx年诺贝尔物理学家将授予对激光研究做处杰出贡献的三位科学家。如图所示是研究激光相干性的双缝干涉示意图,挡板上有两条狭缝S1、S2, 由S1和S2发出的两列波到达屏上时会产生干涉条纹。已知入射激光波长为λ,屏上的P点到两缝S1和S2的距离相等,如果把P处的亮条纹记做0号亮
条纹,由P向上数与0号亮纹相邻的是1号亮纹,与
1号亮纹相邻的亮纹为2号亮纹,设P1处的亮纹恰好
是10号亮纹,直线S1 P1的长度为r1, S2 P1的长度为
r2, 则r2-r1等于( B )
A、5λ B、10λ. C、20λ D、40λ
课后练习与提高
1. 在双缝干涉实验中,入射光的波长为λ,若双缝处两束光的振动情况恰好相同,在屏上距两缝波程差d1= 地方出现明条纹;在屏上距两缝波程差d2=
地方出现暗条纹;若双缝处两束光的振动情况恰好相反,在屏上距两缝波程差d3= 地方出现明条纹;在屏上距两缝波程差d4=
地方出现暗条纹 。
2.
用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则
(A) 干涉条纹的宽度将发生改变.
(B) 产生红光和蓝光的两套彩色干涉条纹.
(C) 干涉条纹的亮度将发生改变.
(D) 不产生干涉条纹 [ D 】
3. 双缝干涉中屏幕E上的P点处是明条纹.若将缝S2盖住,并在S1 S2连线的垂直平分面处放一高折射率介质反射面M,如图所示,则此时 [ A ]
(A) P点处仍为明条纹.
(B) P点处为暗条纹.
(C) 不能确定P点处是明条纹还是暗条纹.
(D) 无干涉条纹.
高中物理教案11
热力学第一定律 能量守恒定律
教学 目标
(1)知道热力学第一定律 ,理解能量守恒定律
(2)对热力学第一定律的数学表达式有简单认识
(3)知道永动机是不可能的
教学 建议
教材分析
分析一:本节由改变物体内能的两种方式引出热力学第一定律及其数学表达式,在此基础上结合以往的知识总结出能量守恒定律,最后通过能量守恒定律阐述永动机是不可能的.
分析二:根据热力学第一定律知,物体内能的改变量 ,运用此公式时,需要注意各物理量的符号:物体内能增加时, 为正,物体内能减少时, 为负;外界对物体做功时, 为正,物体对外界做功时, 为负;物体吸收热量时, 为正,物体放出热量.
分析三:各种形式的能量在转化和转移过程中保持总量不变,无任何附加条件,而某种或几种能的守恒是要有条件的(例如机械能守恒需要对于系统只有重力或弹力做功).
教法建议
建议一:在讲完热力学第一定律后,给出其表达式,为增进学生对其理解,最好能举出实际例子,应用热力学第一定律计算或解释.
建议二:在讲能量守恒定律后,最好能用它对以往所学知识进行一个简单的总结.要使学生认识到能量守恒定律是一个普遍的规律,热力学第一定律是其一个具体表达形式.另外,为激发学生学习兴趣,阐述能量守恒定律的重要意义,可以简单介绍一下19世纪自然科学的三大发现.
教学 设计示例
教学 重点:热力学第一定律和能量守恒定律
教学 难点:永动机
一、热力学第一定律
改变物体内能的方式有两种:做功和热传递.
运用此公式时,需要注意各物理量的符号:物体内能增加时, 为正,物体内能减少时, 为负;外界对物体做功时, 为正,物体对外界做功时, 为负;物体吸收热量时, 为正,物体放出热量时, 为负.
例1:下列说法中正确的是:
A、物体吸收热量,其内能必增加
B、外界对物体做功,物体内能必增加
C、物体吸收热量,同时对外做功,其内能可能减少
D、物体温度不变,其内能也一定不变
答案:C
评析:在分析问题时,要求考虑比较周全,既要考虑到内能包括分子动能和分子势能,又要考虑到改变内能也有两种方式:做功和热传递.
例题2:空气压缩机在一次压缩中,空气向外界传递的`热量2.0 ×10 5 J,同时空气的内能增加了1.5 ×10 5 J. 这时空气对外做了多少功?
解:根据热力学第一定律 知
1.5 ×10 5 J - 2.0 ×10 5 J = -0.5 ×10 5 J
所以此过程中空气对外做了0.5 ×10 5 J的功.
二、能量守恒定律
1、复习各种能量的相互转化和转移
2、能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变.(学生看书学习能量守恒定律内容).
3、能量守恒定律的历史意义.
三、永动机
永动机的原理违背了能量守恒定律,所以是不可能的.
举例说明几种永动机模型
四、作业
探究活动
题目:永动机
组织:分组
方案:收集有关永动机的材料,并运用所学知识说明永动机是不可能的
评价:材料的丰富性
高中物理教案12
【学习目标】
1、能熟练说出平抛运动的概念、性质、物体做平抛运动的条件
2、理解平抛运动可以分解为水平方向的匀速直线运动和竖直方向自由落体运动
3、用分解的思想处理平抛运动问题,探究平抛运动的基本规律。
【重点难点】
重点:解决平抛运动问题的基本思路
难点:用分解的思想理解平抛运动
预习案
【使用说明及学法指导】
1、通读教材,熟记本节基本概念、规律,然后完成问题导学中问题和预习自测。2、问题导学中 “处理平抛运动问题的基本思路”是本节内容的核心和基础,是解决平抛运动问题的前提和关键,应重点理解和熟练把握。3、如有不能解决的'问题,可再次查阅教材或其他参考书。4、记下预习中不能解决的问题,待课堂上与老师同学共同探究。5、限时15分钟。
【问题导学】
1、什么是平抛运动?
2、物体做平抛运动的条件是什么?
3、什么是匀变速运动?平抛运动是匀变速运动吗?
4、处理平抛运动问题的基本思路:平抛运动可分解为水平方向的
和竖直方向的 。物体从O点开始平抛,t时间后到达P点。在图中画出t时间内位移S、t时刻的速度v如图。把速度、位移沿x、y方向分解如上图,则
水平方向分速度vx= ,水平方向分位移x = 。
竖直方向分速度vy= , 竖直方向分位移y = 。
合速度公式V = ,其方向tanα = (α为v与水平方向夹角);
合位移公式S = ,其方向tanβ = (α为v与水平方向夹角)。
高中物理教案13
课前预习
一、安培力
1.磁场对通电导线的作用力叫做___○1____.
2.大小:(1)当导线与匀强磁场方向________○2_____时,安培力最大为F=_____○3_____.
(2)当导线与匀强磁场方向_____○4________时,安培力最小为F=____○5______.
(3) 当导线与匀强磁场方向斜交时,所受安培力介于___○6___和__○7______之间。
3.方向:左手定则:伸开左手,使大拇指跟其余四个手指__○8____,并且都跟手掌在___○9___,把手放入磁场中,让磁感线___○10____,并使伸开的四指指向 _○11___的方向,那么,拇指所指的方向,就是通电导线在磁场中的__○12___方向.
二、磁电式电流表
1.磁电式电流表主要由___○13____、____○14___、____○15____、____○16_____、_____○17_____构成.
2.蹄形磁铁的磁场的方向总是沿着径向均匀地分布的,在距轴线等距离处的磁感应强度的大小总是相等的,这样不管线圈转到什么位置,线圈平面总是跟它所在位置的磁感线平行,I与指针偏角θ成正比,I越大指针偏角越大,因而电流表可以量出电流I的大小,且刻度是均匀的,当线圈中的电流方向改变时,安培力的方向随着改变,指针偏转方向也随着改变,又可知道被测电流的方向。
3、磁电式仪表的优点是____○18________,可以测很弱的电流,缺点是绕制线圈的导线很细,允许通过的电流很弱。
课前预习答案
○1安培力○2垂直○3BIL○4平行○50○60○7BIL○8垂直○9同一个平面内○10垂直穿入手心○11电流○12受力○13蹄形磁铁 ○14 铁芯○15绕在线框上的线圈○16螺旋弹簧○17指针○18灵敏度高
重难点解读
一、 对安培力的认识
1、 安培力的性质:
安培力是磁场对电流的作用力,是一种性质力。
2、 安培力的作用点:
安培力是导体中通有电流而受到的力,与导体的中心位置无关,因此安培力的作用点在导体的几何中心上,这是因为电流始终流过导体的所有部分。
3、安培力的方向:
(1)安培力方向用左手定则判定:伸开左手,使大拇指和其余四指垂直,并且都跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿入手心,并使伸开的四指指向电流方向,那么大拇指所指的方向就是通电导体在磁场中的受力方向。
(2)F、B、I三者间方向关系:已知B、I的方向(B、I不平行时),可用左手定则确定F的唯一方向:F⊥B,F⊥I,则F垂直于B和I所构成的平面(如图所示),但已知F和B的方向,不能唯一确定I的方向。由于I可在图中平面α内与B成任意不为零的夹角。同理,已知F和I的方向也不能唯一确定B的方向。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
4、安培力的大小:
(1)安培力的计算公式:F=BILsinθ,θ为磁场B与直导体L之间的夹角。
(2)当θ=90°时,导体与磁场垂直,安培力最大Fm=BIL;当θ=0°时,导体与磁场平行,安培力为零。
(3)F=BILsinθ要求L上各点处磁感应强度相等,故该公式一般只适用于匀强磁场。
(4)安培力大小的特点:①不仅与B、I、L有关,还与放置方式θ有关。②L是有效长度,不一定是导线的实际长度。弯曲导线的有效长度L等于两端点所连直线的长度,所以任意形状的闭合线圈的有效长度L=0
二、通电导线或线圈在安培力作用下的运动判断方法
(1)电流元分析法:把整段电流等效为多段很小的直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力方向,最后确定运动方向.
(2)特殊位置分析法:把通电导体转到一个便于分析的特殊位置后判断其安培力方向,从而确定运动方向.
(3)等效法:环形电流可等效成小磁针,通电螺线管可以等效成条形磁铁或多个环形电流,反过来等效也成立。
(4)转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样,定性分析磁体在力的作用下如何运动的问题,可先分析电流在磁场中所受的安培力,然后由牛顿第三定律,再确定磁体所受作用力,从而确定磁体所受合力及运动方向.
典题精讲
题型一、安培力的方向
例1、电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。该时刻由里向外射出的电子流将向哪个方向偏转?
解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线圈靠电子流的一侧为向外。电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。(本题用其它方法判断也行,但不如这个方法简洁)。
答案:向左偏转
规律总结:安培力方向的判定方法:
(1)用左手定则。
(2)用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
(3)用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
题型二、安培力的大小
例2、如图,一段导线abcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。线段ab、bc和cd的长度均为L,且 。流经导线的电流为I,方向如图中箭头所示。导线段abcd所受到的磁场的作用力的合力
A. 方向沿纸面向上,大小为
B. 方向沿纸面向上,大小为
C. 方向沿纸面向下,大小为
D. 方向沿纸面向下,大小为
解析:该导线可以用a和d之间的直导线长为 来等效代替,根据 ,可知大小为 ,方向根据左手定则.A正确。
答案:A
规律总结:应用F=BILsinθ来计算时,F不仅与B、I、L有关,还与放置方式θ有关。L是有效长度,不一定是导线的实际长度。弯曲导线的有效长度L等于两端点所连直线的长度,所以任意形状的闭合线圈的有效长度L=0
题型三、通电导线或线圈在安培力作用下的运动
例3、如图11-2-4条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的`压力将会__(增大、减小还是不变?)水平面对磁铁的摩擦力大小为__。
解析:本题有多种分析方法。⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。磁铁对水平面的压力减小,但不受摩擦力。⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
答案:减小 零
规律总结:分析通电导线或线圈在安培力作用下的运动常用方法:(1)电流元分析法,(2)特殊位置分析法, (3)等效法,(4)转换研究对象法
题型四、安培力作用下的导体的平衡问题
例4、 水平面上有电阻不计的U形导轨NMPQ,它们之间的宽度为L,M和P之间接入电动势为E的电源(不计内阻).现垂直于导轨搁一根质量为m,电阻为R的金属棒ab,并加一个范围较大的匀强磁场,磁感应强度大小为B,方向与水平面夹角为θ且指向右斜上方,如图8-1-32所示,问:
(1)当ab棒静止时,受到的支持力和摩擦力各为多少?
(2)若B的大小和方向均能改变,则要使ab棒所受支持力为零,B的大小至少为多少?此时B的方向如何?
解析:从b向a看侧视图如图所示.
(1)水平方向:F=FAsin θ①
竖直方向:FN+FAcos θ=mg②
又 FA=BIL=BERL③
联立①②③得:FN=mg-BLEcos θR,F=BLEsin θR.
(2)使ab棒受支持力为零,且让磁场最小,可知安培力竖直向上.则有FA=mg
Bmin=mgREL,根据左手定则判定磁场方向水平向右.
答案:(1)mg-BLEcos θR BLEsin θR (2)mgREL 方向水平向右
规律总结:对于这类问题的求解思路:
(1)若是立体图,则必须先将立体图转化为平面图
(2)对物体受力分析,要注意安培力方向的确定
(3)根据平衡条件或物体的运动状态列出方程
(4)解方程求解并验证结果
巩固拓展
1. 如图,长为 的直导线拆成边长相等,夹角为 的 形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为 ,当在该导线中通以电流强度为 的电流时,该 形通电导线受到的安培力大小为
(A)0 (B)0.5 (C) (D)
答案:C
解析:导线有效长度为2lsin30°=l,所以该V形通电导线收到的安培力大小为 。选C。
本题考查安培力大小的计算。
2..一段长0.2 m,通过2.5 A电流的直导线,关于在磁感应强度为B的匀强磁场中所受安培力F的情况,正确的是( )
A.如果B=2 T,F一定是1 N
B.如果F=0,B也一定为零
C.如果B=4 T,F有可能是1 N
D.如果F有最大值时,通电导线一定与B平行
答案:C
解析:当导线与磁场方向垂直放置时,F=BIL,力最大,当导线与磁场方向平行放置时,F=0,当导线与磁场方向成任意其他角度放置时,0 3. 首先对电磁作用力进行研究的是法国科学家安培.如图所示的装置,可以探究影响安培力大小的因素,实验中如果想增大导体棒AB摆动的幅度,可能的操作是( ) A.把磁铁的N极和S极换过来 B.减小通过导体棒的电流强度I C.把接入电路的导线从②、③两条换成①、④两条 D.更换磁性较小的磁铁 答案:C 解析:安培力的大小与磁场强弱成正比,与电流强度成正比,与导线的长度成正比,C正确. 4. 一条形磁铁放在水平桌面上,它的上方靠S极一侧吊挂一根与它垂直的导电棒,图中只画出此棒的截面图,并标出此棒中的电流是流向纸内的,在通电的一瞬间可能产生的情况是( ) A.磁铁对桌面的压力减小 B.磁铁对桌面的压力增大 C.磁铁受到向右的摩擦力 D.磁铁受到向左的摩擦力 答案:AD 解析:如右图所示.对导体棒,通电后,由左手定则,导体棒受到斜向左下方的安培力,由牛顿第三定律可得,磁铁受到导体棒的作用力应斜向右上方,所以在通电的一瞬时,磁铁对桌面的压力减小,磁铁受到向左的摩擦力,因此A、D正确. 5..质量为m的通电细杆ab置于倾角为θ的平行导轨上,导轨宽度为d,杆ab与导轨间的动摩擦因数为μ.有电流时ab恰好在导轨上静止,如图右所示.,下图是沿b→a方向观察时的四个平面图,标出了四种不同的匀强磁场方向,其中杆与导轨间摩擦力可能为零的是 A.①② B.③④ C.①③ D.②④ 答案: A 解析: ①中通电导体杆受到水平向右的安培力,细杆所受的摩擦力可能为零.②中导电细杆受到竖直向上的安培力,摩擦力可能为零.③中导电细杆受到竖直向下的安培力,摩擦力不可能为零.④中导电细杆受到水平向左的安培力,摩擦力不可能为零.故①②正确,选A. 6.如图所示,两根无限长的平行导线a和b水平放置,两导线中通以方向相反、大小不等的恒定电流,且Ia>Ib.当加一个垂直于a、b所在平面的匀强磁场B时;导线a恰好不再受安培力的作用.则与加磁场B以前相比较( ) A.b也恰好不再受安培力的作用 B.b受的安培力小于原来安培力的2倍,方向竖直向上 C.b受的安培力等于原来安培力的2倍,方向竖直向下 D.b受的安培力小于原来安培力的大小,方向竖直向下 答案:D 解析:当a不受安培力时,Ib产生的磁场与所加磁场在a处叠加后的磁感应强度为零,此时判断所加磁场垂直纸面向外,因Ia>Ib,所以在b处叠加后的磁场垂直纸面向里,b受安培力向下,且比原来小.故选项D正确. 7. 如图所示,在绝缘的水平面上等间距固定着三根相互平行的通电直导线a、b和c,各导线中的电流大小相同,其中a、c导线中的电流方向垂直纸面向外,b导线电流方向垂直纸面向内.每根导线都受到另外两根导线对它的安培力作用,则关于每根导线所受安培力的合力,以下说法中正确的是( ) A.导线a所受合力方向水平向右 B.导线c所受合力方向水平向右 C.导线c所受合力方向水平向左 D.导线b所受合力方向水平向左 答案:B 解析:首先用安培定则判定导线所在处的磁场方向,要注意是合磁场的方向,然后用左手定则判定导线的受力方向.可以确定B是正确的. 8.如图所示,在空间有三根相同的导线,相互间的距离相等,各通以大小和方向都相同的电流.除了相互作用的磁场力外,其他作用力都可忽略,则它们的运动情况是______. 答案: 两两相互吸引,相聚到三角形的中心 解析:根据通电直导线周围磁场的特点,由安培定则可判断出,它们之间存在吸引力. 9.如图所示,长为L、质量为m的两导体棒a、b,a被置在光滑斜面上,b固定在距a为x距离的同一水平面处,且a、b水平平行,设θ=45°,a、b均通以大小为I的同向平行电流时,a恰能在斜面上保持静止.则b的电流在a处所产生的磁场的磁感应强度B的大小为 . 答案: 解析: 由安培定则和左手定则可判知导体棒a的受力如图,由力的平衡得方程: mgsin45°=Fcos45°,即 mg=F=BIL 可得B= . 10.一劲度系数为k的轻质弹簧,下端挂有一匝数为n的矩形线框abcd.bc边长为l.线框的下半部处在匀强磁场中,磁感应强度大小为B,方向与线框平面垂直.在下图中,垂直于纸面向里,线框中通以电流I,方向如图所示.开始时线框处于平衡状态,令磁场反向,磁感强度的大小仍为B,线框达到新的平衡.在此过程中线框位移的大小Δx______,方向______. 答案: ;位移的方向向下 解析:设线圈的质量为m,当通以图示电流时,弹簧的伸长量为x1,线框处于平衡状态,所以kx1=mg-nBIl.当电流反向时,线框达到新的平衡,弹簧的伸长量为x2,由平衡条件可知 kx2=mg+nBIl. 所以k(x2-x1)=kΔx=2nBIl 所以Δx= 电流反向后,弹簧的伸长是x2>x1,位移的方向应向下. 教学目标 一、知识目标 1、知道什么是反冲运动,能举出几个反冲运动的实例; 2、知道火箭的飞行原理和主要用途。 二、能力目标 1、结合实际例子,理解什么是反冲运动; 2、能结合动量守恒定律对反冲现象做出解释; 3、进一步提高运用动量守恒定律分析和解决实际问题的能力 三、德育目标 1、通过实验,分析得到什么是反冲运动,培养学生善于从实验中总结规律和热心科学研究的兴趣、勇于探索的品质。 2、通过介绍我国成功地研制和发射长征系列火箭的事实,结合我国古代对于火箭的发明和我国的现代火箭技术已跨入世界先进先烈,激发学生热爱社会主义的情感。 教学重点 1、知道什么是反冲。 2、应用动量守恒定律正确处理喷气式飞机、火箭一类问题。 教学难点 如何应用动量守恒定律分析、解决反冲运动。 教学方法 1、通过观察演示实验,总结归纳得到什么是反冲运动。 2、结合实例运用动量守恒定律解释反冲运动。 教学用具 反冲小车、玻璃棒、气球、酒精、反冲塑料瓶等 课时安排 1课时 教学步骤 导入新课 [演示]拿一个气球,给它充足气,然后松手,观察现象。 [学生描述现象]释放气球后,气球内的气体向后喷出,气球向相反的方向飞出。 [教师]在日常生活中,类似于气球这样的运动很多,本节课我们就来研究这种。 新课教学 (一)反冲运动 火箭 1、教师分析气球所做的运动 给气球内吹足气,捏紧出气孔,此时气球和其中的气体作为一个整体处于静止状态。松开出气孔时,气球中的气体向后喷出,气体具有能量,此时气体和气球之间产生相互作用,气球就向前冲出。 2、学生举例:你能举出哪些物体的运动类似于气球所作的运动? 学生:节日燃放的礼花。喷气式飞机。反击式水轮机。火箭等做的运动。 3、同学们概括一下上述运动的特点,教师结合学生的叙述总结得到: 某个物体向某一方向高速喷射出大量的液体,气体或弹射出一个小物体,从而使物体本身获得一反向速度的现象,叫反冲运动 4、分析气球。火箭等所做的反冲运动,得到: 在反冲现象中,系统所受的`合外力一般不为零; 但是反冲运动中如果属于内力远大于外力的情况,可以认为反冲运动中系统动量守恒。 (二)学生课堂用自己的装置演示反冲运动。 1、学生做准备:拿出自己的在课下所做的反冲运动演示装置。 2、学生代表介绍实验装置,并演示。 学生甲: 装置:在玻璃板上放一辆小车,小车上用透明胶带粘中一块浸有酒精的棉花。 实验做法:点燃浸有酒精的棉花,管中的酒精蒸气将橡皮塞冲出,同时看到小车沿相反方向运动。 学生乙: 装置:二个空摩丝瓶,在它们的底部用大号缝衣针各钻一个小洞,这样做成二个简易的火箭筒,在铁支架的立柱端装上顶轴,在放置臂的两侧各装一只箭筒,再把旋转系统放在顶轴上,往火箭筒内各注入约4 mL的酒精,并在火箭筒下方的棉球上注入少量酒精。点燃酒精棉球,片刻火箭筒内的酒精蒸气从尾孔中喷出,并被点燃,这时可以看到火箭旋转起来。 学生丙:用可乐瓶做一个水火箭,方法是用一段吸管和透明胶带在瓶上固定一个导向管,瓶口塞一橡皮塞,在橡皮塞上钻一孔,在塞上固定一只自行车车胎上的进气阀门,并在气门芯内装上小橡皮管,在瓶中先注入约1/3体积的水,用橡皮塞把瓶口塞严,将尼龙线穿过可乐瓶上的导向管,使线的一端拴在门的上框上,另一端拴在板凳腿上,要使线拉直,将瓶的进气阀与打气筒相接,向筒内打气到一定程度时,瓶塞脱开,水从瓶口喷出,瓶向反方向飞去。 过渡引言:同学们通过自己设计的实验装置得到并演示了什么是反冲运动,那么反冲运动在实际生活中有什么应用呢?下边我们来探讨这个问题。 (三)反冲运动的应用和防止 1、学生阅读课文有关内容。 2、学生回答反冲运动应用和防止的实例。 学生:反冲有广泛的应用:灌溉喷水器、反击式水轮机、喷气式飞机、火箭等都是反冲的重要应用。 学生:用枪射击时,要用肩部抵住枪身,这是防止或减少反冲影响的实例。 3、用多媒体展示学生所举例子。 4、要求学生结合多媒体展示的物理情景对几个物理过程中反 冲的应用和防止做出解释说明: ①对于灌溉喷水器, 当水从弯管的喷嘴喷出时,弯管因反冲而旋转,可以自动地改变喷水的方向。 ②对于反击式水轮机:当水从转轮的叶片中流出时,转轴由于反冲而旋转带动发电机发电。 ③对于喷气式飞机和火箭,它们靠尾部喷出气流的反冲作用而获得很大的速度。 ④用枪射击时,子弹向前飞去枪身向后发生反冲,枪身的反冲会影响射击的准确性,所以用步枪时我们要把枪身抵在肩部,以减少反冲的影响。 教师:通过我们对几个实例的分析,明确了反冲既有有利的一面,同时也有不利的一面,在看待事物时我们要学会用一分为二的观点。 我们知道:反冲现象的一个重要应用是火箭,下边我们一认识火箭: (四)火箭: 1、演示:把一个废旧白炽灯泡敲碎取出里面的一根细玻璃管,往细玻璃管装由火柴刮下的药粉,把细管放在支架上,用火柴或其他办法给细管加热。 现象:当管内的药粉点燃时,生成的燃气从细口迅速喷出,细管便向相反方向飞去。教师讲述:上述装置就是火箭的原理模型。 2、多媒体演示古代火箭,现代火箭的用途及多级火箭的工作过程,同时学生边看边阅读课文。 3、用实物投影仪出示阅读思考题: ①介绍一下我国古代的火箭。? ②现代的火箭与古代火箭有什么相同和不同之处? ③现代火箭主要用途是什么? ④现代火箭为什么要采用多级结构? 4、学生解答上述问题: ①我国古代的火箭是这样的: 在箭上扎一个火药筒,火药筒的前端是封闭的,火药点燃后生成的燃气以很大速度向后喷出,火箭由于反冲而向前运动。 ②现代火箭与古代火箭原理相同,都是利用反冲现象来工作的。 但现代火箭较古代火箭结构复杂得多,现代火箭主要由壳体和燃料两大部分组成,壳体是圆筒形的,前端是封闭的尖端,后端有尾喷管,燃料燃烧产生的高温高压燃气从尾喷管迅速喷出,火箭就向前飞去。 ③现代火箭主要用来发射探测仪器、常规弹头或核弹头,人造卫星或宇宙飞船,即利用火箭作为运载工具。 ④在现代技术条件下,一级火箭的最终速度还达不到发射人造卫星所需要的速度,发射卫星时要使用多级火箭。 用CAI课件展示多级火箭的工作过程: 多级火箭由章单级火箭组成,发射时先点燃第一级火箭,燃料用完工以后,空壳自动脱落,然后下一级火箭开始工作。 教师介绍:多级火箭能及时把空壳抛掉,使火箭的总质量减少,因而能够达到很高的温度,可用来完成洲际导弹,人造卫星、宇宙飞船等的发射工作,但火箭的级数不是越多越好,级数越多,构造越复杂,工作的可靠性越差,目前多级火箭一般都是三级火箭。 那么火箭在燃料燃尽时所能获得的最终速度与什么有关系呢? 5、出示下列问题: 火箭发射前的总质量为M、燃料燃尽后的质量为m,火箭燃气的喷射速度为v1,燃料燃尽后火箭的飞行速度v为多大? [学生分析并解答]: 解:在火箭发射过程中,由于内力远大于外力,所以动量守恒。 发射前的总动量为0,发射后的总动量为(M-m)v-mv1(以火箭的速度方向为正方向)则:(M-m)v-mv1=0 师生分析得到:燃料燃尽时火箭获得的最终速度由喷气速度及质量比M/m决定。 巩固训练 水平方向射击的大炮,炮身重450 kg,炮弹射击速度是450 m/s,射击后炮身后退的距离是45 cm,则炮受地面的平均阻力是多大? 小结 1、当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量而向相反方向运动,这种向相反方向的运动,通常叫做反冲运动。 2、对于反冲运动,所遵循的规律是动是守恒定律,在具体的计算中必须严格按动量守恒定律的解题步骤来进行。 3、反冲运动不仅存在于宏观低速物体间,也存在于微观高速物体。 教学目的 1.了解组成物质的分子具有动能及势能,并且了解分子平均动能和分子势能都与哪些因素有关。 2.理解物体的内能以及物体内能由物体的状态所决定。 教学重点 物体的内能是一个重要的概念,是本章教学的一个重点。学生只有正确理解物体的内能才能理解做功和热传递及物体内能的变化关系。 教学难点 分子势能。 教学过程 一、复习提问 什么样的能是势能?弹性势能的大小与弹簧的形变关系怎样? 二、新课教学 1.分子动能。 (1)组成物质的分子总在不停地运动着,所以运动着的分子具有动能,叫做分子动能。 (2)启发性提问:根据你对布朗运动实验的观察,分子运动有什么样的特点? 应答:分子运动是杂乱无章的,在同一时刻,同一物体内的分子运动方向不相同,分子的运动速率也不相同。 教师分析分子速率分布特点——在同一时刻有的分子速率大,有的分子速率小,从大量分子总体来看,速率很大和速率很小的分子是少数,大多数分子是中等大小的速率。 教帅进一步指出:由于分子速率不同,所以每个分子的动能也不同。对于热现象的研究来说,每个分子的动能是毫无意义的,而有意义的是物体内所有分子动能的平均值,此平均值叫做分子的平均动能。 (3)要学生讨论研究。 用分子动理论的观点,分析冷、热水的区别。 讨论结论应是:组成冷、热水的大量分子的速率各不相同,则其动能也各不相同,但就冷水总体来说分子的平均动能小于热水的分子平均动能。 教师指出:由此可见,温度是物体分子平均动能的标志。 2.分子势能。 (1)根据复习提问的回答(地面上的物体与地球之间有相互作用力;发生了形变的弹簧各部分间存在着相互作用力,因此在它们的相对位置发生变化时,它们之间便具有势能)说明分子间也存在着相互作用力,所以分子也具有由它们相对位置所决定的能,称之为分子势能。 (2)分子势能与分子间距离的关系。 提问:分子力与分子间距离有什么关系? 应答:当r=r0时,F=0,r<r0时,F为斥力,r>r0时,F为引力。 教师指出:由于分子间既有引力又有斥力,好象弹簧形变有伸长或压缩两种情况,因此分子势能与分子间距离也分两种情况。 ①当r>r0时,F为引力,分子势能随着r的增大而增加。此种情况与弹簧被拉长弹性势能的增加很相似。 ②当r< p=""> 小结:分子势能随着分子间距离变化而变化,而组成物体的大量分子间距离若增大(减小)则宏观表现为物体体积增大(减小)。可见分子势能跟物体体积有关。 (3)物体的内能。 教师指出:物体里所有的分子动能和势能的总和叫做物体的内能。由此可知一切物体都具有内能。 ①物体的内能是由它的状态决定的(状态是指温度、体积、物态等)。 提问:对于质量相等、温度都是100℃的水和水蒸气来说它们的内能相同吗? 应答,质量相等意味着它们的分子数相同,温度相等意味着它们的平均动能相同,但由于水蒸气分子间平均距离比水分子间平均距离大得多,分子势能也大得多,因而质量相等的水蒸气的内能比水大。 ②物体的状态发生变化时,物体的内能也随着变化。 举例说明:当水沸腾时,水的温度保持不变,所供给的大量能用于把分子拉开,增大了分子势能,因而增大了物体的内能,当水汽凝结时,分子动能没有明显变化,但分子靠得更紧密了,分子势能便减小了,因此物体的内能减小了。 ③物体的内能是不同于机械能的另一种形式的能。 a.静止在地面上的物体以地球为参照物,物体的机械能等于0,但物体内部的分子仍然在不停地运动着和相互作用着,物体的内能永远不能为0。 b.物体在具有一定的内能时,也可以具有一定的机械能。如飞行的子弹。 C.不能把物体的机械能和物体的内能混淆。只要物体的温度、体积、物态不变,不论物体的机械能怎样变化其内能仍保持不变。反之,尽管物体的内能在变化,它的机械能可以保持不变。 (4)学生讨论题: ①静止在光滑水平地面上的木箱具有什么能?若木箱沿光滑水平地面加速运动,木箱具有什么能?此时木箱的内能与静止时相比较变化了没有? ②质量相等而温度不相等的两杯水,哪一杯水具有较大的内能?温度相同而质量不等的两杯水,哪一杯水具有较大的内能? 最后总结一下本课要点。 1.了解内能的概念,能简单描述温度和内能的关系。 2.知道做功和热传递都可以改变物体的内能。 3.了解热量的概念,知道热量的单位是焦耳。 重点目标 1.内能、热量概念的建立. 2.改变物体内能的途径.难点目标内能、热量概念的建立. 导入示标凉爽的秋夜,仰望星空时,会突然发现一颗流星在夜色中划过,并留下一条美丽的`弧线.流星是怎样形成的呢? 目标三导学做思一:物体的内能 问题1:组成物质的分子在不停地做热运动,分子应具有什么能?物体的分子之间有引力和斥力,且分子之间有间隔,分子应具有什么能?什么叫物体的内能?你能说出它的单位吗?机械能和内能有什么区别吗? 小结:物体内所有分子由于热运动而具有的动能,以及分子之间势能的总和叫做物体的内能.它的单位是焦耳,简称焦,符号为J.机械能是宏观的,能看得到的,内能是微观的,是看不到的. 问题2:把红墨水滴入装满水的烧杯里,过一段时间,整杯水变为红色,这种现象说明了什么?当红墨水分别滴入热水和冷水中时,发现热水变色比冷水快,这又说明了什么? 小结:温度高的物体分子运动剧烈,内能大.所以物体的内能与温度有关. 问题3:小明说:“炽热的铁水温度很高,具有内能;冰冷的冰块温度很低,不具有内能.”小刚说:“炽热的铁水温度高,内能大;冰冷的冰山温度低,内能小.”你认为他们的说法正确吗?说出理由. 小结:一切物体都具有内能.物体的内能还与质量有关. 问题3:处理例1和变式练习1 例1:【解析】物体内所有分子热运动的动能与分子势能的总和叫做物体的内能温度越高,物体内能越大温度相同的同种物质,分子个数越多,分子热运动的动能与分子势物体内能越大 问题1:如右图所示,在一个配有活塞的厚玻璃筒里放一小团硝化棉,把活塞迅速往下压,你能观察到什么现象(棉花燃烧),该实验说明了什么?你再将一根铁丝反复弯折数十次,用手接触弯折处,有什么感觉,该实验又说明了什么? 小结:做功可以改变物体的内能. 问题2:做饭时,铁锅为什么能烫手?放在阳光下的被子,为什么能被晒得暖乎乎? 小结:热传递也可以改变物体的内能. 问题3:处理例2和变式练习2 例2:【解析】来回拉绳子,绳子与管壁之间克服摩擦做功,使管内的酒精内能增大,温度升高;当把塞子冲出时,管内的酒精蒸气对塞子做功,将内能转化成机械能.正确的答案为A选项. 答案:A 变式练习 让学生进一步理解改变内能的途径有做功和热传递两种方法,选项ABD是做功改变物体的内能,选项C是通过热传递的方式改变物体的内能. 答案:C 学做思三:热量 问题1:什么叫热量?它的单位是什么?它用什么字母表示? 小结:物体通过热传递方式所改变的内能称为热量,它的单位是J,它用字母Q表示. 问题2:在热传递现象中,高温物体和低温物体的温度、内能和热量如何变化? 小结:在热传递过程中,高温物体放出热量,温度降低,内能减小;低温物体吸收热量,温度升高,内能增大.所以热传递过程中传递的是热量,改变了物体的内能,表现在物体温度的变化. 【高中物理教案】相关文章: 高中物理教案12-16 [优选]高中物理教案07-31 高中物理教案(15篇)07-22 高中物理教案15篇10-27 物理教案05-15 初中物理教案02-08 初中物理教案06-28 高二物理教案02-07 高三物理教案08-26高中物理教案14
高中物理教案15
