七年级数学上册教案
作为一名教职工,常常要写一份优秀的教案,借助教案可以更好地组织教学活动。教案应该怎么写才好呢?以下是小编帮大家整理的七年级数学上册教案,欢迎大家借鉴与参考,希望对大家有所帮助。

七年级数学上册教案1
教 案
第一章 有理数
(1)本周小张一共用掉了多少钱?存进了多少钱?
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
夯实基础
(1)序号为几的零件最接近标准?
④-(-) 0.025.
第2课时 加法运算律
教学目标:
1.能运用加法运算律简化加法运算.
2.理解加法运算律在加法运算中的作用,适当进行推理训练.
教学重点:如何运用加法运算律简化运算.
教学难点:灵活运用加法运算律.
教与学互动设计:
(一)情境创设,导入新课
思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.
(二)合作交流,解读探究
计算:20+(-30)与(-30)+20两次得到的和相同吗?
得出结论:20+(-30)=(-30)+20
换几组数去试:得到加法交换律:a+b= (学生填).
其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)
计算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出结论:加法结合律:(a+b)+c= .
【例1】计算:
16+(-25)+24+(-35)
【例2】课本P20例3
说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.
总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.
(三)应用迁移,巩固提高
【例3】 利用有理数的加法运算律计算,使运算简便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20xx)+(-20xx)
【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?
(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
(四)总结反思,拓展升华
本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.
(五)课堂跟踪反馈
夯实基础
1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( )
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.计算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?
4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)问收工时距A地多远?
(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?
第3课时 有理数的减法
教学目标:
1.经历探索有理数减法法则的过程,理解有理数减法法则.
2.会熟练进行有理数减法运算.
教学重点:有理数减法法则和运算.
教学难点:有理数减法法则的推导.
教与学互动设计
(一)创设情景,导入新课
观察温度计:
你能从温度计看出4℃比-3℃高出多少度吗?
学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?
按照刚才观察到的结果,可知4-(-3)=7 ①,而4+(+3)=7 ②,∴由①②可知:4-(-3)=4+(+3) ③,上述结论的获得应放手让学生回答.
(二)动手实践,发现新知
观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?
结论:减去-3等于加上-3的相反数+3.
(三)类比探究,总结提高
如果将4换成-1,还有类似于上述的结论吗?
先让学生直观观察,然后教师再利用“减法是与加法相反的.运算”引导学生换一个角度去验算.
计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2 ①,
又因为(-1)+(+3)=2 ②,
由①②有(-1)-(-3)=-1+(+3) ③,
即上述结论依然成立.
试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?
让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.
再试:把减数-3换成正数,结果又如何呢?
计算9-8与9+(-8);15-7与15+(-7)
从中又能有新发现吗?
让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.
归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.
减法法则:减去一个数,等于加上这个数的相反数.
用字母表示:a-b=a+(-b).
(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)
(四)例题分析,运用法则
【例】计算:
(1)(-3)-(-5); (2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)总结巩固,初步应用
总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?
教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.
七年级数学上册教案2
教学内容:
第89页例3、例4,90页课堂活动,练习二十二第5、6、7、8题。
教学目标:
1.在熟悉的生活情境中,进一步理解负数的意义,会用正负数表示相反意义的量。
2.感受负数在生活中的广泛应用,会解释生活中的一些负数的实际意义。
教学重点:
会用正、负数表示相反意义的量。
教学难点:
会用正、负数解决生活中的实际问题。
教具准备:
多媒体课件
教学方法:
合作交流、师生互动
教学过程:
一、游戏激趣
教师:我们来玩个游戏轻松一下,游戏名叫《我反,我反,我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。谁先试一试?
向上看 向前走200米 电梯上升15层 我在银行存入了500元
二、复习旧知
我们已经学习了负数,你能举几个负数的例子吗?
通过前面内容的学习,你还知道哪些知识?
三、学习新知
1.教学例3。
出示例3的情境:小明向东走200米,小军向西走200米。
教师问:你准备怎样来表示这两个不同意思的量?
学生1:向东走200米记作+200米,向西走200米就记作-200米。
学生2:向西走200米记作+200米,向东走200米就记作-200米。
教师对这两种记法都应给予肯定。
学生独立试一试
(1)如果汽车向正北方向行驶50m记作+50m,那么汽车向正南方向行驶100m该怎样记?
(2)如果体重减少2kg记作-2kg,那么+5kg表示什么?
学生完成后,集体订正并小结:由此可见,我们可以用正数、负数来表示相反意义的量。
(3)练习:课堂活动第2题:说出表中正数、负数表示的意义。
项目 父母工资 电话费 父母奖金 水、电、气费 伙食费
收支情况(元) 4500 -130 1000 -280 -1750
2.教学例4。
教师:其实,正、负数在生活中有着广泛的应用。如某农用物资商场把下半年的盈亏情况做了一个表:(出示例4)
月份 7月 8月 9月 10月 11月 12月
盈亏情况(元) +6500 -2700 0 -750 +9500 +16700
教师:表中的正数,负数各表示什么意思?(正数表示盈利,负数表示亏损。)
教师:从表中你获得了哪些信息?
学生小组内交流,然后全班汇报。
教师:盈和亏也是两个相反意义的量,我们用正数、负数来表示,简洁而准确。
3.讨论生活中的.负数。
教师出示存折和电梯图上的负数,让学生讲讲表示的是什么意思。
教师:存折上的-800表示什么意思?
学生:取出800元记作-800;存入了1200元记作1200元,还可以记作+1200元
电梯里的1和-1表示什么意思?(以地面为界线,地面以上一层我们用1或+1来表示,-1就表示地下一层)
老师现在要到33层应该按几啊?要到地下3层呢?
四、课堂练习
1.下图每段表示1m,小丽刚开始的位置在0处。
(1)小丽从0处向东行5m表示+5m,那么她从0点向西行4m表示为( )
(2)如果小丽的位置是+8m,说明她是从0点向( )行了( )m。
(3)如果小丽的位置是-6,说明她是从0点向( )行了( )m。
(4)如果小丽先向西行6m,再向东行9m,这时小丽的位置表示为( )m。
(5)如果小丽先向东行3m,再向西行7m,这时小丽的位置表示为( )m。
2.如果顺时针方向旋转90°记作+90°,那么逆时针方向旋转90°记作( )。
3.如果-20分表示比平均分低20分,那么+15表示( )
4.如果比规定任务多做5个记作+5个,那么-5表示( )
5.2.如果在银行存入10000元记作+10000,那么-5000表示( )。
五、自学“你知道吗?”
学生阅读教科书92页内容,说说有什么收获?
六、课堂小结
通过今天的学习,你有什么收获?
七、课堂作业
练习二十二第6、7题。
家庭作业:90页课堂活动第3题,练习二十二第5、8题
板书设计:
认识具有相反意义的量及其简单应用
向东走200米记作+200米,向西走200米就记作-200米
正数、负数来表示相反意义的量。
七年级数学上册教案3
七年级上2.5有理数的减法(一)教案
教学目标:
1、经历探索有理数减法法则的过程。
2、理解并初步掌握有理数减法法则,会做有理数减法运算。
3、能根据具体问题,培养抽象概括能力和口头表达能力。
教学重点运用有理数减法法则做有理数减法运算。
教学难点有理数减法法则的得出。
教具学具多媒体、教材、计算器
教学方法研讨法、讲练结合
教学过程一、引入新课:
师:下面列出的是连续四周的.最高和最低气温:
第1周第二周第三周第四周
最高气温+6℃0℃+4℃-2℃
最低气温+2℃-5℃-2℃-5℃
周温差
求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。
生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。
列式为;
(+6)-(+2)=4
0-(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教学过程二、有理数减法法则的推倒:
师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。
2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?
3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。
举例:(-5)+()=-2
得出(-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而(-2)+(+5)=+3
有理数减法法则:减去一个数,等于加上这个数的相反数。
教学过程三、法则的应用:
例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教学过程
解:(1)原式=-34+(-56)+(+28)
=-90+(+28)
=-62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
= 676
注意:强调计算过程不能跳步,体现有理数减法法则的运用。
检测题
教学过程四、练习反馈:
师:巡视个别指导,订正答案。
教学过程五、小结:
有理数减法法则:
减去一个数,等于加上这个数的相反数。
有理数减法法则:
减去一个数,等于加上
这个数的相反数。例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
七年级数学上册教案4
教学目标:
知识目标:有理数的概念,有理数的分类,熟练的写出某集合中的数。
过程与方法:感受分类的思想,分类的依据。
情感态度价值观:感受数的对称美,
课堂教学过程
一.情境问题:
到目前为止,你能举出哪些数,你能把这些数分类吗?你的分类依据是什么?有理数:整数正整数,0,负整数。
分数正分数,负分数。
有理数:正有理数
负有理数。
二.尝试应用:
1课本第8页练习。补充:整数集合,负整数集合,分数集合。
2判断:1.正整数和负整数统称为整数。
2.小数不是有理数。
3正数和负数统称为有理数。
4分数包括正分数和负分数。
http://baogao.oh100.com 是有理数。
三.补偿提高:
将下列的数填在相应的括号中。
-8.5,6,-21/5,0,-200,+13/5,-2,35,0.01,+86.
正整数集合:
负整数集合:
正分数集合:
负分数集合:
正数集合:
分数集合:
非正数集合:
自然数集合:
思考:既是正数又是整数的数是什么数?既是负数又是分数的数是什么数?
四.小结与反思:
本节课用到得思想,重要知识,注意问题,你的`疑惑.
教后反思:
本节对有理数的分类:按正负来分,按整数和分数来分。明确分类标准。能正确的写出某些数的集合。
本节需要学生熟练。再有理数的分类的探讨上二班较流畅,但是正负来分为落实好。
七年级数学上册教案5
教材首先出示鞋盒、粉笔盒、魔方、易拉罐、笔筒、足球、玻璃球等学生熟悉的实物图,让学生把形状相同的物体放在一起,引出四种立体图形。由于学生已经具备许多这方面的早期经验,所以可以让学生通过观察,初步感受到形状是物体的众多属性之一,日常生活中不同的物体有的形状相同,有的形状不同,形状相同的物体可以看成一类。
然后,教材通过列表的方式,让学生对四种立体图形分别进行直观的辨认、区别。每种图形的认识包括实物图、模型图和图形名称三个层次,符合儿童从具体到抽象地认识事物的认知特点。先让学生通过观察形状相同的几种实物,从直观上认识到虽然这些实物在材料、大小、用途等方面各不相同,但形状相同。然后逐步数学化,抛开这些实物的其他属性,只考虑形状这一属性,抽象出一般的模型,使学生初步感知各种立体图形的一般形状特征。在此基础上,指明这种一般模型叫什么图形。
最后,让学生说一说身边哪些物体是长方体,哪些是正方体,哪些是圆柱,哪些是球形。引导学生把学到的数学知识与生活实际联系起来,体现了其应用性。并且,每个学生可以说出属于自己的答案,有很大的开放性。
“做一做”的第1题,让学生通过滚圆柱、推长方体、搭积木、转球、摸球等活动,利用视觉、触觉、运动觉的协同作用,感性的、初步的了解各种立体图形的特征,使学生感受平面和曲面的区别。并通过让学生互相说一说操作的感受,培养初步的交流能力。
“做一做”的第2题,为学生提供了一个游戏的范例,要求学生在看不见实物的情况下,按指定的形状摸实物。使学生通过触摸体会各种图形的特征,加深对所学图形的认识。
第一课时认识简单的立体图形
教学目标:
1、通过操作和观察,使学生初步认识长方体、正方体、圆柱、球;知道它们的名称;会辩认识这几种物体和图形。
2、培养学生动手操作、观察能力,初步建立空间观念。
3、通过学生活动,激发学习兴趣,培养学生合作、探究和创新意识。
教学重、难点:初步认识长方体、正方体、圆柱和球的实物与图形,初步建立空间观念。
教具、学具准备:6袋各种形状的物体,图形卡片,计算机软件、投影片。
课时安排:1课时
教学过程:
一、质疑激情:
小朋友们,我们每组都有一个装满东西的袋子,这是智慧爷爷送给你们的礼物,想知道是什么礼物吗?把袋子里的东西倒出来看一看。智慧爷爷还提出一个要求,把形状相同的物体放在一起。
二、操作感知:
1、分一分,揭示概念。
(1)分组活动。让学生把形状相同的物体放在一起,教师巡视。
(2)小组汇报。
问:你们是怎样分的?为什么这样分?
学生可能回答可分成这样几组:一组是长长方方的;一组是四四方方的;一组是直直的,像柱子;一组是圆圆的球。
(3)揭示概念。
教师拿出大小不同、形状不同、颜色不同的实物直观揭示长方体、正方体、圆柱和球的概念,并随机板书名称。
2、摸一摸,感知特点。
(1)让学生动手摸一摸长方体、正方体、圆柱和球的实物,然后把自己的感受和发现在小组内交流。
(2)汇报交流
学生可能说出:
长方体:是长长方方的,有平平的面。
正方体:是四四方方的,有平平的面。
圆柱:是直直的,上下一样粗细,两头是圆的,平平的。
球:是圆圆的。
(如果学生说出长方体、正方体有6个面等,教师应给予肯定,但不要求学生必须说出来。)
三、形成表象,初步建立空间观念
1、由实物抽象实物图形。
投影出示实物图“鞋盒”,引导学生说出它的形状是长方体,然后抽象出长方体图形。
用同样方法出示“魔方”、“茶叶桶”、“足球”等实物,抽象出正方体、圆柱、和球的图形。
2、记忆想象
(1)分别出示长方体、正方体、圆柱和球的图形,先让学生辩认,然后把长方体、正方体、圆柱和球的图形贴在黑板上,最后再拿出相应的实物。
(2)学生闭眼想四种图形的样子。(教师说图形,学生想)
(3)学生闭眼按教师要求拿出四种不同形状的实物。
(4)先让学生闭上眼睛,然后教师给出一种实物,由学生判断它的形状。
(5)出示大小、颜色不同的长方体、正方体、圆柱和球的图形,让学生进行辩认。
3、学生列举日常生活中见过的形状是长方体、正方体、圆柱和球的实物。
四、分组活动,体验特征
(1)让学生拿出长方体和圆柱,放在桌面上玩一玩,使学生发现圆柱会“轱辘”,然后教师说明,圆柱可以滚动。
(2)让学生用长方体、正方体、圆柱和球搭一搭。
通过搭,使学生明确:球没有平平的面,能任意滚动;长方体、正方体和圆柱都有平平的面,搭在一起很平稳。
2、游戏“看谁摸得准”。
(1)每小组一人说出物体的名称,其他同学按指定要求摸,看谁摸得准。
(2)教师说物体形状,学生摸。
五、小结:你今天有什么收获?
六、巩固练习
35页做一做1、2题。
第二课时认识图形数学活动
教学目标
1、通过触摸、拼摆等生动有趣的活动,使学生加深对本单元所学立体图形(长方体、正方体、圆柱和球)的认识,初步体会图形的特征和相互之间的关系。同时感受学习数学的乐趣。
2、使学生形成初步的观察能力、动手操作能力和数学交流能力。
3、使学生初步感受数学与实际生活的联系。
教具、学具的准备
教师和学生各准备一些形状是长方体、正方体、圆柱和球的实物,让学生在家长的帮助下寻找(可以用牙膏盒等)。教师还要准备几个其他形状的实物,如棱柱形铅笔,三棱柱积木等。
教学过程设计
一、介绍“找物品”的方法
师:请同学们把课前准备好的形状是长方体、正方体、圆柱和球的实物拿出来,同桌同学互相介绍一下自己收集的实物的形状。
同桌学生互相介绍完后,让他们把自己的'每种形状的实物各选一个,集中起来放在一个大桌子上或地上。然后把全班同学分成4组,每组同学各管一种形状的实物,把这些实物分一分类。管正方体的要把正方体的实物归为一类。分好类后,各组同学摸一摸、说一说本组那类实物的形状,再选两个代表在班里说一说实物的形状。对于非本单元所学形状的实物,可以归为一类,交给教师,教师告诉学生:这些物体的形体不是我们这一单元所学的,但是它们也是一种立体图形,以后我们在中学会学到。
活动结束后,教师将分好类的物体收拾好,以便在下面的活动中使用。
教师将全班学生分成三组,分别做“摸实物”、“搭积木”、“随意拼”三种游戏。
二、介绍“摸实物”的方法
1.准备实物
教师从“找物品”的活动收集起来的实物中,选一些形状稍大的便于确定形状的实物(包括棱柱形实物,如棱柱形铅笔,三棱柱积木)放在地上。
2.摸实物
把做“摸实物”活动的同学,分成几个小组,以小组为单位进行活动。教师请一小组作示范说明游戏规则:先让一个同学拿出一个立体图形(如圆柱)给另外两个同学看,看清后把这两个同学的眼睛蒙上,然后让他们从桌子上摸出这种图形,其他同学进行判断。如果摸错了,可以让他们继续摸,直到摸对为止。然后再给蒙上眼睛的同学各拿一个立体图形,让他们摸一摸,说出拿出的是什么形状的物体。这样做两次后,让进行判断的同学来出题摸实物。
三、介绍“拼积木”的方法
1.教师示范
教师用积木边拼边说:“我用4个大小相同的长方体可以拼一个大的正方体,还可以用2个大小相同的正方体拼一个长方体。”
2.学生拼积木
师:请同学们自己拼一拼,看能不能用几个大小相同的正方体拼一个大的正方体或长方体,能不能用大小相同的长方体拼一个大的正方体或长方体?
学生拼的时候,教师注意巡视。集体订正时,从用几个长方体拼成一个正方体或长方体,用几个正方体拼一个长方体或正方体的拼法中各选一种展示出来,让学生说一说拼成后的立体图形各用了几个什么形状的积木。
四、介绍“随意拼”的方法
1.带着拼
教师边拼边说:这里老师用一个长方体、一个正方体和两个圆柱拼了一辆汽车,同学们,你们也能拼一辆汽车吗?
让学生自己拼,教师巡视,如果学生拼的汽车的形状、大小和教师拼的不一样,只要能看出是汽车就行。
2.随意拼
师:同学们除了拼汽车,还会拼其他东西吗?
让学生根据个人的喜好随意拼摆一些东西,拼摆用的实物可以是积木,也可以是其它东西,例如拼坦克,可以用长方体的饮料盒作车身,用易拉罐作车轮,用圆柱形的积木作炮筒。学生拼好后,教师选几件有趣的东西展示给全班同学,让拼的同学告诉大家拼的是什么东西,各用了什么形状的物品。
五、巩固练习
35页做一做。
认识物体和图形教学反思
一年级学生刚从幼儿园的小朋友升为一年级的小学生,根据他们的年龄特征,他们采用的思维方式是形象思维为主。怎样让孩子认识生活中的主体图形,并以实物体中抽象出简单的立体图形呢?课前一段时间里,我作了大量的准备工作,平日里注意收集好生活中的物品以备教具使用,如长方体的牙膏盒、药品盒等,正方体的饼干盒、魔方等,圆柱体的茶盒、茶杯等,球体有乒乓球、皮球等,并在卡片上画出数学模型图,如长方体、圆柱、球的线描立体结构图弄。同时在课前让学生按要求收集好相关生活物品以作学具。教学中,首先出示我收集的各种图形,让孩子们一一识别,然后让孩子们倒出自己的学具,试着把自己认为是同一类形状的物品分在一起,接着出示牙膏盒,让孩子了解它的大概形状特征,如数一数有几个面,哪些面的大小是一样的,这样引导孩子在有目的的思考中探究并认识,像牙膏盒这种有6个面组成的,对着的两个面的大小一样的物体就是长方体,然后我再出一个与牙膏盒的大小不一样的纸盒,让孩子观察说说特点,强化认识长方体,学会变通。接着在孩子们认识长方体实物的基础上在黑板上贴出抽象的长方体模型图片,将孩子对长方体的认识,从具象的感知的认识上升到抽象的、理性的认识,并用类似的方法引导孩子认识正方体、圆柱、球,让孩子在看一看、比一比、摸一摸、说一说等活动中找到长方体与正方体的相同点一不同点;发现圆柱和球的共同点和区别点,在动手操作实践中直观感知长方体和正方体不能滚动、圆柱和球能滚动等特征。
这堂课准备还算较充分,课堂设计也符合孩子们的学习特点,整堂课学习氛围浓,我和我的学生们都感到很轻松愉快。课后我仔细回味,这堂课的目标是达到了,但学觉得对教材资源的挖掘不够深,还应注意知识的拓展与延伸。比如,只注意了教材知识点的突破,只追求了“求同”,统一认识了长方体、正方体、圆柱、球等立体图形,但实际不能归入那些图形中,如像这样的图形与长方体应区别开来,这样的图形应与圆柱区别开来,“ ”应与球区分开来。还有一种特殊的长方体,它有两个面是正方形的,有可能一些孩子会误认为是正方体,而它实际属长方体,应让孩子对照长方体与正方体的各自特点,这样很容易就分辩出来了。
这一节课是孩子们初步接触简单的立体几何图形,下一课时便是让学生们探索从立体中抽象出简单的平面图形。而其中的“三角形”将由“三棱锥”立体图形中抽象出来。看来在认识立体图形时,还应补充认识“三棱锥”知道它也是一种立体图形,为后面认识平面图形“三角形”作好充分准备。
思量之后,我在教学“认识平面图形”时,开课提出疑难以解决上堂课的遗留问题,弥补所欠缺的知识,进一步完善孩子对简单的立体图形的认识,并为本堂课的“认识简单的平面图形”作为铺垫。这个开课让孩子们感受到探索知识的乐趣,培养了孩子的发散思维,求异思维,以及辩证地分析问题的能力。
七年级数学上册教案6
教学内容:
人教版小学数学教材六年级下册第107~108页例2及相关练习。
教学目标:
1.在学习过程中引导学生探索研究数与形之间的联系,寻找规律,发现规律,学会利用图形来解决一些有关数的问题。
2.让学生经历猜想与验证的过程,体会和掌握数形结合、归纳推理、极限等基本数学思想。
重点难点:
探索数与形之间的联系,寻找规律,并利用图形来解决有关数的问题。
教学准备:
教学课件。
教学过程:
一、直接导入,揭示课题
同学们,上节课我们探究了图形中隐藏的数的规律,今天我们继续研究有关数与图形之间的联系。(板书课题:数与形)
【设计意图】直奔主题,简洁明了,有利于学生清楚本节课学习的内容和方向。
二、探索发现,学习新知
(一)教师与学生比赛算题
1.教师:你知道等于多少吗?(学生:)
教师:那等于多少呢?(学生计算需要时间)教师紧接着说:我已经算好了,是,不信你算算。
2.只要按照这个分子是1,分母依次扩大2倍的规律写下去,不管有多少个分数相加,我都能立马算出结果。有的同学不相信是吗?咱们试试就知道。为了方便,我请我们班计算最快的同学跟我一起算,看看结果是否相同。谁来出题?
在学生出题后,老师都能立刻算出结果,并且是正确的,学生感到很惊奇。
3.知道我为什么算得那么快吗?因为我有一件神秘的法宝,你们也想知道吗?
【设计意图】一方面,教师通过与学生比赛计算速度,且每次老师胜利,使学生产生好奇心,再通过教师幽默的语言,吸引学生的注意力,激发学生的学习兴趣和求知欲。另一方面,为接下来学习例题做好铺垫。
(二)借助正方形探究计算方法
1.这件法宝就是(师边说边课件出示一个正方形),让我们来把它变一变,聪明的同学们一定能看明白是怎么回事了。
2.进行演示讲解。
(1)演示:用一个正方形表示“1”,先取它的一半就是正方形的(涂红),再剩下部分的一半就是正方形的`(涂黄)。
想一想:正方形中表示的涂色部分与空白部分和整个正方形之间有什么关系呢?(涂色部分等于“1”减去空白部分)空白部分占正方形的几分之几?()那么涂色部分还可以怎么算呢?(),也就是说。
(2)继续演示,谁知道除了通分,还可以怎么算?
根据学生回答,板书。
(3)演示:那么计算就可以得到?()。
3.看到这儿,你发现什么规律了吗?
4.小结:按照这样的规律往下加,不管加到几分之一,只要用1减去这个几分之一就可以得到答案了。
5.这个法宝怎么样?谁来说说它好在哪里?你学会了吗?
6.尝试练习
【设计意图】将复杂的数量运算转化为简单的图形面积计算,转繁为简,转难为易,引导学生探索数与图形的联系,让学生体会到数形结合、归纳推理的数学思想方法。
(三)知识提升,探索发现
1.感受极限。
(1)刚才我们已经从一直加到了,如果我继续加,加到,得数等于?()再接着加,一直加到,得数等于?()随着不断继续加,你发现得数越来越?(大)无数个这样的数相加,和会是多少呢?
(2)这时候你心中有没有一个大胆的猜想?(学生猜想:这样一直加下去,得数会不会就等于1了。)
(3)想象一下,如果我们在刚才加的过程中在正方形上不断涂色,那空白部分的面积就越来越?(小)而涂色部分的面积越来越接近?(1)也就是求和的得数越来越接近?(1)最终得数是1吗?你有什么方法来证明得数就是1?
(学情预设:学生提出书本的圆形图和线段图,若没有学生提出,教师自己提出。)
2.利用线段图直观感受相加之和等于“1”。
(1)书本上有两幅图,我们一起来看看(课件出示)。一幅是圆形图,一幅是线段图,你能看懂它的意思吗?请你想一想,然后告诉大家你的想法。
(2)学生看书思考。
(3)全班交流,课件演示,得出结论:这些分数不断加下去,总和就是1。
【设计意图】利用数与形的结合,让学生直观体会极限数学思想,并让学生经历猜想得数等于“1”,到数形结合证明得数等于“1”的过程,激发学生学习兴趣,培养学生探索新知的精神。
3.课堂小结。
对于这种借用图形来帮助我们解决问题的方法,你有什么感受?
教师小结:是的,“数”与“形”有着紧密的联系,在一定条件下可以相互转化。当用数形结合的方法解决问题时,你会发现许多难题的解决变得很简单。
4.举一反三。
其实在以前的学习中,我们也常用到数形结合的数学方法帮助我们解题,你能想到些例子吗?(如学生有困难,教师举例:一年级加法,分数的认识,复杂的路程问题线段图等。)
【设计意图】让学生体会“数形结合”是数学学习中常用的方法。
三、练习巩固
1.基础练习。
(1)学生独立计算。
(2)全班交流反馈。
【设计意图】通过练习,回顾新知,巩固新知,使学生对新知识掌握得更扎实。
2.小林、小强、小芳、小兵和小刚5人进行象棋比赛,每2人之间都要下一盘。小林已经下了4盘,小强下了3盘,小芳下了2盘,小兵下了1盘。请问:小刚一共下了几盘?分别和谁下的?
解决问题
(1)全班读题,学生独立思考。
(2)指名回答。
(3)根据学生回答情况,连线(课件演示)。
(4)结合连线图得出:小刚一共下了2盘,分别和小林、小强下的。
【设计意图】让学生进一步体会数形结合的直观性和变难为易的特点。
四、课堂总结
快下课了,请你来说说这节课有什么收获?
课后反思:
图形的直观形象的特点,决定了化数为形往往能达到以简驭繁的目的,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加结果为1,但是接近 1,但这个无限接近于1的数是多少呢?电子白板呈现出圆形模型和线段模型来表示“1”,使学生结合分数意义,在圆上和线段上分别有规律地表示这些加数,当这个过程无止境地持续下去时,所有的扇形和线段就会把整个圆和整条线段占满,即和为“1”,用画图的方法来表示计算过程和结果,让学生感受到什么叫无限接近,什么叫直观形象,同时,一个极其抽象的极限问题,变得十分直观和便捷。
七年级数学上册教案7
【学习目标】:
1、掌握正数和负数概念;
2、会区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。
【重点难点】:正数和负数概念
【教学过程】:
一、知识链接:
1、小学里学过哪些数请写出来:
2、阅读课本P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:
3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
二、自主学习
1、正数与负数的产生
(1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。请你也举一个具有相反意义量的例子: 。
(2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
(2)活动: 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
(3)阅读P2的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的.数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:
1. P3第1,2题(直接做在课本上)。
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。
3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54
则正数有_____________________;负数有____________________。
4.下列结论中正确的是 ????????????????( )
A.0既是正数,又是负数
C.0是最大的负数
【要点归纳】:
正数、负数的概念:
(1)大于0的数叫做 ,小于0的数叫做 。
(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【拓展训练】:
1.零下15℃,表示为_________,比O℃低4℃的温度是_________。
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,
其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________。
4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
【课后作业】P5第1、2题
七年级数学上册教案8
教学目标
1,掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2,会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3,感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。
教学难点 数轴的概念和用数轴上的点表示有理数
知识重点
教学过程(师生活动) 设计理念
设置情境
引入课题 教师通过实例、课件演示得到温度计读数.
问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?
(多媒体出示3幅图,三个温度分别为零上、零度和零下)
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
(小组讨论,交流合作,动手操作) 创设问题情境,激发学生的学习热情,发现生活中的数学
点表示数的感性认识。
点表示数的理性认识。
合作交流
探究新知 教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?
让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?
从而得出数轴的.三要素:原点、正方向、单位长度 体验数形结合思想;只描述数轴特征即可,不用特别强调数轴三要求。
从游戏中学数学 做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第4个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第3个同学为原点,游戏还能进行吗? 学生游戏体验,对数轴概念的理解
寻找规律
归纳结论 问题3:
1, 你能举出一些在现实生活中用直线表示数的实际例子吗?
2, 如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
3, 哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?
4, 每个数到原点的距离是多少?由此你会发现了什么规律?
(小组讨论,交流归纳)
归纳出一般结论,教科书第12的归纳。 这些问题是本节课要求学会的技能,教学中要以学生探究学习为主来完成,教师可结合教科书给学生适当指导。
巩固练习
教科书第12页练习
小结与作业
课堂小结 请学生总结:
1, 数轴的三个要素;
2, 数轴的作以及数与点的转化方法。
本课作业 1, 必做题:教科书第18页习题1.2第2题
2,选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1, 数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2, 教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3, 注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。
七年级数学上册教案9
教学目标
1.知识与技能
会利用绝对值比较两个负数的大小.
2.过程与方法
利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.
3.情感、态度与价值观
敢于面对数学活动中的困难,有学好数学的'自信心.
教学重点难点
重点:利用绝对值比较两个负数的大小.
难点:利用绝对值比较两个异分母负分数的大小.
教与学互动设计
(一)创设情境,导入新课
投影 你能比较下列各组数的大小吗?
(1)│-3│与│-8│ (2)4与-5 (3)0与3
(4)-7和0 (5)0.9和1.2
(二)合作交流,解读探究
讨论交流 由以上各组数的大小比较可见:正数都大于0,0都大于负数,正数都大于负数.
思考 若任取两个负数,该如何比较它的大小呢?
点拨 若-7表示-7℃,-1表示-1℃,则两个温度谁高谁低?
【总结】 两个负数,绝对值大的反而小,或说,两个负数绝对值小的反而大.
注意 ①比较两个负数的大小又多了一种方法,即:两个负数,绝对值大的反而小.
②异号的两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑先比较它们的绝对值.
③在数轴上表示有理数,它们从左到右的顺序也就是从小到大的顺序,即:左边的数总比右边的数要小.即:利用数轴来比较有理数的大小.
七年级数学上册教案10
【教学目标】
知识与技能:了解并掌握数据收集的基本方法。
过程与方法:在调查的过程中,要有认真的态度,积极参与。
情感、态度与价值观:体会统计调查在解决实际问题中的作用,逐步养成用数据说话的良好习惯。
【教学重难点】
重点:掌握统计调查的基本方法。
难点:能根据实际情况合理地选择调查方法。
【教学过程】
讲授新课
像前面提到的收集数据的活动中,全班同学是我们要考察的对象,我们采用问卷对全体同学作了逐一调查,像这样对全体对象进行的调查叫做全面调查。
调查、试验如采用普查可以收集到较全面、准确的数据,但普查的工作量比较大,有时受客观条件(人力、财力等)的限制难以进行,有时由于调查具有破坏性,不允许采用。在这些情况下,常常采用抽样调查,即从被考察的全体对象中抽出一部分对象进行考察的调查方式。
在一个统计问题中,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本(sample),样本中个体的数目叫做样本容量。
例如,在通过试验考察500只新工艺生产的灯泡的使用寿命时,从中抽取50只进行试验。这500只灯泡的使用寿命的全体是总体,其中每只灯泡的`使用寿命是个体,抽取的50只灯泡的使用寿命是一个样本,50是这个样本的样本容量。
为了使抽取的50只灯泡能很好地反映500只灯泡的情况,抽取时要使每只灯泡逐一进行编号,再把编号写在小纸片上,将小纸片揉成团,放在一个不透明的容器内,充分搅拌后,从中一个个地抽取50个号签。
上面抽取样本的过程中,总体中的各个个体都有相等的机会被抽到,像这样的抽样方法是一种简单随机抽样。
师:以“你知道父母的生日吗?”为题在班级进行调查,请设计一张问卷调查表。
学生小组合作、讨论,学生代表展示结果。
教师指导、评论。
师:除了问卷调查外,我们还有哪些方法收集到数据呢?
学生小组讨论、交流,学生代表回答。
师:收集数据的直接方法有访问、调查、观察、测量、试验等,间接方法有查阅资料、上网查询等。就以下统计的数据,你认为选择何种方法去收集比较合适?
(1)你班中的同学是如何安排周末时间的?
(2)我国濒临灭绝的植物数量;
(3)某种玉米种子的发芽率;
(4)学校门口十字路口每天7:00~7:10时的车流量。
七年级数学上册教案11
一、教材分析
“数据的收集”是华东师大版《数学》七年级(上)中第五章第一节的第一个学习内容,在本章教材中起着对后面进一步学习的铺垫作用,数据的收集是从学生身边熟悉的简单问题入手,经历数据的收集过程,让学生体会数据的作用,进而养成用数据说话的习惯。
二、教学目标
(一)知识与技能目标
1。通过实际问题理解额数与频率的概念。
2。在收集数据的过程中,了解收集数据的方法和步骤。
3。能够多角度对数据进行分析,并能够根据数据作出合理的解释和推断。
(二)过程与方法目标
1。经历数据的处理过程,学会合作学习,学会相互交流、相互评价。
2。在形成猜想和作出决策的过程中,形成解决问题的一些基本策略,发展实践能力。
(三)情感与态度目标
1。通过利用数据的收集解决身边的一些简单问题,初步体验数据在解决实际问题中的作用,感受所学知识是有价值的。
2。在问题解决的过程中,体验与他人合作的`重要性,品尝发现带来的欢乐,树立学好数学的自信心。
三、教学重点
在合作讨论的过程中体会数据的作用。
四、教学难点
利用数据进行分析。
五、教学过程
(一)创设问题情境
师:李小姐有一个工厂,管理人员有李小姐、6个亲戚;工作人员有5个领工、10个工人和1名学徒,现在需要增加一个新工人。
小张姐姐应征而来,与李小姐交谈,李小姐说:“我们这里的报酬不错,平均工资是每周300元。”小张姐姐工作几天以后,找到李小姐说:“你欺骗了我,我已经问过其他工人,没有一个工人的工资超过每周300元,平均工资怎么可能是300元呢?”李小姐说。“小张。平均工资是300元,不信,你看这张工资表”
人员李小姐亲戚领工工人学徒合计
工资/人2200250220200100——
人数16510123
工资总数22001500110020001006900
请大家仔细观察表中的数据,讨论回答下面的问题:
李小姐说平均每周工资300元是否欺骗了小张姐姐
七年级数学上册教案12
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪。
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:—3,—2,—2。7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2。7%。
五、讲授新课
(1)、像—3,—2,—2。7%这样的数(即在以前学过的0以外的数前面加上负号“—”的数)叫做负数。而3,2,+2。7%在问题中分别表示零上3摄氏度,净胜2球,增长2。7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0。5,+,…就是3,2,0。5,…一个数前面的“+”、“—”号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量
(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。正数和负数在许多方面被广泛地应用。在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的`某地的海拔高度,负数表示低于海平面的某地的。海拔高度。例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为—155m。记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、请学生解释课本中图1.1—2,图1.1—3中的正数和负数的含义。
(7)、你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量。
六、巩固练习
课本第3页,练习1、2、3、4题。
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数。正数就是我们过去学过的数(除0外),在正数前放上“—”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数。如果原数是一个负数,那么前面放上“—”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数。
八、作业布置
1、课本第5页习题1.1复习巩固第1、2、3题。
七年级数学上册教案13
学习目标
1.掌握多项式、多项式的项及其次数,常数项的概念。
2.确定一个多项式的项、项数和次数。
3.由单项式与多项式归纳出整式概念。
4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。
重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
难点:多项式的次数。
学法指导
从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。
《2.1.3多项式》同步四维训练含答案
新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:
(1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);
(2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度.
《2.1.2多项式》课时练习含答案
1.下列说法中正确的是( )
A.多项式ax2+bx+c是二次多项式
B.四次多项式是指多项式中各项均为四次单项式
C.-ab2,-x都是单项式,也都是整式
D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项
2.如果一个多项式是五次多项式,那么它任何一项的`次数( )
A.都小于5 B.都等于5
C.都不小于5 D.都不大于5
3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是( )
A.a10+b19 B.a10-b19
C.a10-b17 D.a10-b21
4.若xn-2+x3+1是五次多项式,则n的值是( )
A.3 B.5 C.7 D.0
5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有.(填序号)
6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.
7.多项式的二次项系数是.
8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?
9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.
10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.
(1)请把游戏最后丁所报出的答案用整式的形式描述出来;
(2)若甲取的数为19,则丁报出的答案是多少?
七年级数学上册教案14
学习目标:
1、知识技能:进一步理解正、负数及零的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量。毛
2、数学思考:体会数学符号与对应的思想。
3、情感态度:师生合作,联系实际。培养学生的想象能力、理论联系实际的能力、分析解决问题的能力,培养学生良好的个性品质和学习习惯。
重点:进一步理解正、负数及零表示的量的意义。
难点:理解负数及零表示的量的意义。
课前准备
卷尺或皮尺
教学流程安排
活动1、复习正、负数 从学生已有的知识出发,为进一步学习做好知识准备。
活动2、活动安排 使学生进入问题情境,加深对负数的理解。
活动3、举例说明 提高解决实际问题的能力。
活动4、巩固练习 掌握正数和负数。
教学过程设计
活动1
1、 给出一组数,请学生说说哪些是正数、负数。
2、 学生举例说明正、负数在实际中的应用。
师生行为及设计意图
通过上一堂课的学习,让一组同学任意给出一组数,另一组同学找出哪些是正数?哪些是负数?正整数?负分数?复习正、负数的定义。
活动2
1、各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜。
2、分小组完成,用卷尺或皮尺量桌子的高度、桌面的长度和宽度,并将它们表示出来。(超出1米的部分用正数表示,不足1米的部分用负数表示。)
师生行为
1、老师说出指令:向前1步,向后3步,向前-2步,向后-2步。学生按老师的指令表演。
2、各小组派一名同学汇报完成的情况。
设计意图
通过学生的'活动,激发学生参与课堂教学的热情,在活动中巩固所学的知识。
活动3
问题展示
1、 一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重的增长值。
2、 20xx年 商品进出口总额比上年的变化情况是:
美国减少6.4%% , 德国增长1.3%,
法国减少2.4% , 英国减少3.5%,
意大利增长0.2 %, 中国增长7.5%,
师生行为及设计意图
在学生已初步掌握新知识的前提下,由问题1 、2提高学生综合解决实际问题的能力。
活动4
1、 P6 练习
2、 总结:这堂课我们学习了那些知识?你能说一说吗?
3、 作业 P7习题1 .1 4、7、8
师生行为及设计意图
教师巡视、指导。学生交流、完成练习。对所学知识的巩固是教学的一个重要环节,这里的练习可以分散进行。
教师引导学生回忆本节课所学内容。学生回忆、交流。教师和学生一起补充完善。教师要努力使学生自己回忆、总结、梳理所学的知识,将所学的知识与以前学过的知识进行紧密联结,完善认知结构。
学生课后巩固、提高、发展。
七年级数学上册教案15
教学目标
知识与技能:
1.会求代数式的值,会利用代数式求值判断代数式所反应的规律;
2.能利用求代数式的值解决较简单的实际问题;
过程与方法:
3.通过求代数式的值,体会代数式实际上是由计算程序反映的一种数量间的关系;
4.将不同的数代入同一代数式,求出相应的值,能够从所得代数式的值来判断代数式所反映的规律,体会抽象的代数式与实际数量关系之间的关系.
情感态度价值观:
5.通过代数式求值,感受数学中的程序化和抽象性,感受抽象的字母和具体的数之间的关系,进一步理解字母表示数的意义,进一步增强符号感.
教学重点
理解代数式的意义,会求代数式的值
教学难点
利用代数式求值推断代数式所反映的规律
教学方法
引导、探究法,即引导学生发现规律,使其在探究过程中掌握知识
教学准备
多媒体,或投影仪,胶片
课时安排
1课时
教学过程
Ⅰ.巧设情景问题,引入课题
[师]我们在探讨了代数式之后,不仅能用字母与代数式表示数量关系,还能解释一些代数式的实际背景或几何意义.
下面我们来看一组数值转换机:(出示投影片§3.3A),大家想一想,做一做.
下面是一组数值转换机,写出图1的输出结果,找出图2的转换步骤:
[生1]图1的输出结果是:6x-3.
图2的转换步骤:-3、×6.
[师]这位同学书写的跟你们的一样吗?
[生齐声]一样.
[师]很好,同学们写得很正确,这两个数值转换机由于转换的步骤不一样,因此输出的代数式也不一样.
我们已经知道,表示数的字母具有任意性和确定性.当给出代数式时,如:6x-3,字母x可以取任何有理数,当给出未知数的值时,如x=5时,求6x-3的值,这时,x只能是5这个确定的数.
今天我们就来研究第三节:代数式求值.
Ⅱ.讲授新课
当我们把一些数输入“数值转换机”时,通过一个算法,相应得就会得到一些数值.下面大家来做一做,填下表.(出示投影片§3.3B)
输入-2-
00.26
4.5
图1输出
图2输出
(学生计算,使他们认识到代数式求值就是转换过程或是某种计算).
[师]大家在运算时一定要注意:要按转换的步骤进行.填出结果了吗?……来同桌间相互检查.××同学说说你的结果.
[生]
[师]同学们做得都不错,很好,下面,我们来比赛一下,看谁做得又对又快.(出示投影片§3.3C)
议一议:
填写下表,并观察下列两个代数式的值的变化情况:
(1)随着n的值逐渐变大,两个代数式的值如何变化?
(2)估计一下,哪个代数式的值先超过100?
(学生积极发言,大多同学填得对)
[生]
[师]很好,大家计算得又对又快,接下来我们分组讨论:(1)、(2)问题,并总结.
[生]随着n的值逐渐变大,两个代数式的值也逐渐变大.
根据值的变化趋势,我估计:n2的值先超过100.
[师]对,代数式的`值是由其所含的字母取值所确定的,并随字母取值的变化而变化,字母取不同的值,代数式的值可能不同,也可能相同.求出代数式的值后,根据值的变化趋势还可以进行预测、推断代数式所反映的规律.
下面我们来做练习,进一步体会本节课的内容:
Ⅲ.课堂练习
(一)课本P99随堂练习
1.人体血液的质量约占人体体重的6%~7.5%.
(1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?
(2)亮亮的体重是35千克,他的血液质量大约在什么范围内?
(3)估计你自己的血液质量?
答案:(1)6%a千克~7.5%a千克
(2)亮亮的血液质量大约在2.1千克到2.625千克之间
(3)让学生估计计算一下
2.物体自由下落的高度h(米)和下落时间t(秒)的关系,在地球上大约是:
h=4.9t2,在月球上大约是:h=0.8t2.
(1)填写下表
(2)物体在哪儿下落得快?
(3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.
答案:(1)
(2)地球
(3)通过表格,估计当h=20米时,t(地球)≈2秒,t(月球)≈5秒
(二)试一试
1.当a=-1,-0.5,0,0.5,1,1.5,2时,a2-a是正数还是负数?当|a|>2时,估计a2-a是正数还是负数?
解:本题可列表进行比较.
通过估计得:当|a|>2时,a2-a>0
2.当a=-4,-3,-2,-1,1,2,3,4时,分别求出代数式a2+的值.你发现了什么?
解:
从计算的结果中发现:当a取互为相反数的值时,a2+的值相等;当|a|>1时,a的绝对值变大,a2+的值也变大.
Ⅳ.课时小结
通过本节课的学习,我们会求代数式的值,对于一个代数式,它所含的字母取不同的值时,所得代数式的值,一般也不同,所以在求代数式的值时,要注意解题步骤:(1)代入.
(2)计算.
Ⅴ.课后作业
(一)看课本P98;P99的读一读.
(二)课本习题3.31、2、3、4.
(三)(1)预习内容:P102~103
(2)预习提纲
1.项的系数和项的概念.
2.进一步理解字母表示数的意义.
Ⅵ.活动与探究
1.下面是两个数值转换机,请你输入五组数据,比较两个输出的结果,发现了什么?
根据上题的启示,你能设计出两个数值转换机来验证:a2-2ab+b2=(a-b)2吗?
过程:让学生根据题意,求代数式的值.然后讨论、总结,最后根据总结的规律与等式a2-2ab+b2=(a-b)2进行比较,设计两个数值转换机.
结果:通过输入数值,进行计算,发现了两个输出的结果相等,即:
a2+b2+2ab=(a+b)2
根据上题的启示,设计出如下的两个数值转换机,使得:a2-2ab+b2=(a-b)2.
2.已知=7,求的值.
过程:让学生审清题,不要盲目计算.从题中知:与正好是互为倒数,整体代入,问题可轻松解决.
结果:因为=7,所以:=.
所以:原式=2×7-×=13.
板书设计
§3.3代数式求值
一、“数值转换机”求值三、课堂练习
二、议一议
四、课时小结
规律五、课后作业
【七年级数学上册教案】相关文章:
数学七年级上册教案11-08
七年级数学上册教案12-11
七年级上册数学教案最新06-24
上册数学练习二教案05-10
数学七年级上册教学反思10-14
七年级上册地理教案09-09
七年级上册生物教案11-07
七年级生物上册教案07-03
七年级上册音乐教案09-08
