相交线教案

时间:2025-02-11 17:04:43 维泽 教案 我要投稿
  • 相关推荐

相交线教案(通用10篇)

  作为一名为他人授业解惑的教育工作者,时常要开展教案准备工作,教案是备课向课堂教学转化的关节点。教案应该怎么写呢?下面是小编精心整理的相交线教案,欢迎大家借鉴与参考,希望对大家有所帮助。

相交线教案(通用10篇)

  相交线教案 1

  教学目标

  1、理解相交线、邻补角、对顶角的概念;

  2、理解对顶角相等的性质

  3、通过对顶角性质的推理过程,提高推理和逻辑思维能力;

  4、通过变式图形的识图训练,提高识图能力。

  重点:邻补角、对顶角的概念,对顶角性质与应用。

  难点:理解对顶角相等的性质。

  一、情景诱导

  教师在轻松欢快的音乐中演示第五章章首图片为主体的多媒体课件。

  学生欣赏图片(多媒体投影汕头大桥的图片、围棋的棋盘),阅读其中的文字。

  师生共同总结:同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案;围棋的纵线相互平行,横线相互平行,纵线和横线相交。这些都给我们以相交线、平行线的形象。在我们生活的中,蕴涵着大量的相交线和平行线。那么两条直线相交形成哪些角?这些角又有什么特征?本节我们一起来学习相交线所成的角及

  它们的关系。

  教师板书:5.1.1相交线

  教师出示一块纸片和一把剪刀,表演剪刀剪纸过程,提出问题:剪纸时,用力握紧把手,把手

  引发了什么变化?进而使剪刀刃也发生了什么变化?

  二、探究指导

  探究提纲(请同学们利用8分钟时间自学课本第2页至第3页练习以前的部分,并完成探究提纲)

  1、请你画直线AB、CD相交于点O,并说出图中4个角两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

  2、你用量角器分别量一量各个角的度数,发现“相邻”关系的两角_____,“对顶”关系的两角_______。请同桌比赛说说邻补角和对顶角的定义,并快速写下来。

  3、对顶角有何性质?并用一句话叙述。

  4、对顶角性质证明:(学生独立写出已知,求证并证明)

  已知:

  求证:

  三、展示归纳

  1、找有问题的学生逐题汇报。老师板书。

  2、发动学生评价,完善。

  3、教师画龙点睛地强调。

  四、变式练习

  (一、二、三题口答,四题先让学生做,教师巡回指导,然后让有一定问题的学生汇报展示,发动其他学生评价完善,教师情调关键地方,总结思想方法)

  1.▲平面上不相重合的两条直线之间的位置关系为_______或________

  2.两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。P3例;P82题;P97题;P35P353题

  3.两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。4.垂直三要素:垂直关系,垂直记号,垂足

  5.做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可。

  6.做钝角三角形的高:最长的边上的`高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。

  7.垂直公理:过一点有且只有一条直线与已知直线垂直。

  8.垂线段最短;

  9.点到直线的距离:直线外一点到这条直线的垂线段的长度。

  10.两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧),内错角Z(在两条直线内部,位于第三条直线两侧),同旁内角U(在两条直线内部,位于第三条直线同侧)。

  P7例、练习1

  11.平行公理:过直线外一点有且只有一条直线与已知直线平行。

  12.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。如果b//a,c//a,那么b//cP174题

  13.平行线的判定。P15例结论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

  P15练习;P177题;P368题。

  14.平行线的性质。P21练习1,2;P236题

  15.命题:如果+题设,那么+结论。P22练习1

  16.真、假命题P2411题;P3712题

  17.平移的性质P28归纳

  相交线教案 2

  学习目标:

  1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。

  2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。

  3、通过辨别对顶角与邻补角,培养识图的能力。

  学习重点

  邻补角和对顶角的概念及对顶角相等的性质。

  学习难点:

  在较复杂的图形中准确辨认对顶角和邻补角。

  学具准备:

  剪刀、量角器

  学习过程:

  一、学前准备

  1、预习疑难:

  2、填空:①两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。②同角或的`补角。

  二、探索与思考

  (一)邻补角、对顶角

  1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角逐渐变小,剪刀刃之间的角度也相应。我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。

  相交线教案 3

  学习目标:

  知识目标

  了解两条直线互相垂直的概念;

  2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。

  能力目标

  培养提高学生观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。

  德育目标

  培养学生辩证唯物主义思想及不断发现,探索新知识的精神。

  情感目标

  通过创设情境,利用变式训练,多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的机会。

  重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线

  教具:多媒体、投影仪、自制的可旋转的两根木条等

  互究策略:教学流程)

  一、背景

  1.旗杆与旗台边缘线的垂直关系;红十字会标志;

  2.两条直线相交,产生两对对顶角,且对顶角相等。

  二、师生互究1.创设问题情境

  师:这是两幅草坪的图案。在绿色的.草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?

  师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……

  师:让我们共同探索图甲这种特殊情况。

  2.回顾再现:对顶角相等

  两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC

  1. 提高:教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。

  师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2) 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?

  生: ……(用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励)

  2. 提升:两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。

  师:ⅰ)如图(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O。“AB⊥CD”读作“AB垂直于CD”或“CD垂直于AB”。

  ⅱ)两条直线AB⊥CD, 垂足为点O,则∠AOC=∠AOD=∠BOC=∠BOD=90°

  5.再探究:师:请同学们举一些日常生活中互相垂直的直线的例子;

  生:……

  师:请同学们用三角尺或量角器:

  ⅰ)经过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的垂线有几条?

  ⅱ)设这一点在直线AB上,重作上述过程。

  :在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

  师:请同学们互相门交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义

  师:

  a)、靠已知直线——找待过定点——画已知直线的垂线(一靠、二过、三垂直)。

  b)、有一条并且只有一条没有第二条。

  师:如图(5)请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。

  6.学生探索:如图(6)所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?

  7.教师:只有线段AB最短,且当AB与DC垂直时,才最短。

  提高为:线段AB的长度就是点A到直线DC的距离。

  思考:点A到直线DC的距离与点A到点C的距离有什么区别?

  点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。

  三、较量1.P170 1 、 2 、 3 2.应用:

  ⑴、某村庄在如图(7)所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。

  ⑵、教材P170 做一做⑶、体育课上怎样测量跳远成绩。

  图(7)

  脚印

  脚印

  四、分享:

  a) 两条直线互相垂直的概念;

  b) 如何过已知直线上或已知直线外的一点作唯一的垂线。

  五、探索:① P174 1 、 2

  ③ 学校的位置如图(8)所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。

  相交线教案 4

  教学目标:

  1.理解对顶角和邻补角的概念,能在图形中辨认.

  2.掌握对顶角相等的性质和它的推证过程.

  3。通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.

  教学反思

  教学过程

  一、创设情境,引入课题

  先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.

  教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.

  二、探究新知,讲授新课

  1.对顶角和邻补角的概念

  学生活动:观察上图,同桌讨论,教师统一学生观点并板书.

  【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

  学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:

  (1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

  (2)对顶角是成对存在的',它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质

  提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

  ∴∠l=∠3(同角的补角相等).

  注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

  或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).

  学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

  解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).∠4=∠2=140°(对顶角相等).三、范例学习

  学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.

  变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1:∠2=2:9四、课堂小结

  学生活动:表格中的结论均由学生自己口答填出.

  五、布置作业:课本P3练习

  相交线教案 5

  课型:新授课

  备课人:

  审核人:

  学习目标

  1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

  2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角

  重点、难点

  重点:邻补角、对顶角的概念,对顶角性质与应用。

  难点:理解对顶角相等的性质的探索。

  教学过程

  一、复习导入

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件。

  学生欣赏图片,阅读其中的文字。

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线。本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行的判定以及图形的平移问题。

  二、自学指导

  观察剪刀剪布的'过程,引入两条相交直线所成的角

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小。如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大。

  三、问题导学

  认识邻补角和对顶角,探索对顶角性质

  (1)学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流。

  ∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线。

  ∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线。

  (2)学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等。

  (3)概括形成邻补角、对顶角概念。

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角。

  如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角。

  四、典题训练

  1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数。

  2.判断下列图中是否存在对顶角。

  小结

  相交线教案 6

  教学目标:

  1.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角.

  2.理解对顶角相等,并能运用它解决一些问题.

  重点:

  邻补角、对顶角的概念,对顶角的性质与应用.

  难点:

  理解对顶角相等的性质的探索.

  教学过程:

  一、创设情境,引入新课

  引导语:

  我们生活的世界中,蕴涵着大量的相交线和平行线.

  本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行线的判定以及图形的平移问题.

  二、尝试活动,探索新知

  教师出示一块布片和一把剪刀,表演剪刀剪布的过程.

  教师提出问题:剪布时,用力握紧把手,发生了什么变化?进而使什么也发生了变化?

  学生观察、思考、回答,得出:

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刀刃之间的角相应变小.如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刀刃之间的角也相应变大.

  教师提问:我们可以把剪刀抽象成什么简单的图形?

  学生回答:画成两条相交的直线,学生画直线AB、CD相交于点O,并说出图中4个角.

  教师提问:两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生用量角器分别量一量各角的度数,发现各对角的度数有什么关系?(学生得出结论:相邻的两个角互补,对顶的两个角相等)

  学生根据观察和度量完成下表:

  两条直线相交、所形成的角、分类、位置关系、数量关系

  教师提问:

  如果改变∠AOC的大小,会改变它与其他角的位置关系和数量关系吗?

  学生思考回答:

  只会改变数量关系而不会改变位置关系.

  师生共同定义邻补角、对顶角:

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点,而且一个角的两边分别是另一个角的两边的反向延长线,那么这两个角叫做对顶角.

  教师提问:

  你同意下列说法吗?如果错误,如何订正?

  1.邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两个角的另一条边在同一条直线上.

  2.邻补角可看成是平角被过它的顶点的一条射线分成的两个角.

  3.邻补角是互补的两个角,互补的两个角也是邻补角.

  学生思考回答:1、2是对的,3是错的.

  第3个应改成:邻补角是互补的两个角,互补的两个角不一定是邻补角.

  教师让学生说一说在学习对顶角的.概念后,通过实际操作获得的直观体验.

  教师把说理过程规范地板书:

  在右图中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.

  教师板书对顶角的性质:

  对顶角相等.

  强调对顶角的概念与对顶角的性质不能混淆:

  对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

  三、例题讲解

  【例】 如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

  【答案】 由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.

  四、巩固练习

  1.判断下列图中是否存在对顶角.

  2.按要求完成下列各题.

  (1)两条直线相交,构成哪两种特殊位置关系的角?指出下图中具有这两种位置关系的角.

  eq o(sup7(,图(1)) ,图(2))

  (2)如图,若∠AOD= 90°,那么直线AB与CD的位置关系如何?

  【答案】

  1.都不存在对顶角.

  2.(1)对顶角,邻补角.

  对顶角:∠AOC和∠BOD,∠AOD和∠BOC.

  邻补角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.

  (2)垂直.

  五、课堂小结

  教师引导学生进行本节课的小结并强调对顶角的概念与对顶角的性质不能混淆:对顶角的概念是确定两角的位置关系,对顶角的性质是确定互为对顶角的两角的数量关系.

  教学反思

  通过本节课的学习,大部分学生能积极主动地参与到学习活动中来,并能积极主动地提出各类问题并解决问题,达到了基本的教学效果.但是由于对新概念的理解不是很深刻,所以在应用方面存在不足,针对这一情况,教师应选择典型的例题,详细讲解,指导学生探求解题的思路和方法,加深对概念的理解,做到熟练的应用。

  相交线教案 7

  一、教学目标

  1、经历观察、推理、交流等过程,进一步发展空间观念和推理能力;

  2、了解邻补角和对顶角的概念,掌握邻补角、对顶角的性质;

  3、培养学生解决实际问题的能力。

  二、教学重点与难点

  重点:对顶角相等的探索过程。

  难点:学生推理能力和表达能力的培养。

  三、教学准备

  学生:三角尺、量角器。

  教师:多媒体课件、剪刀。

  四、教学设计(教学过程)

  1、情景引入(多媒体投影汕头大桥的图片)

  同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案,这些都给我们以相交线、平行线的形象。两条直线相交能形成哪些角?这些角又有什么特征?这就是我们今天这堂课要研究的内容:5.1.1相交线(板书)。

  设计意图说明:通过学生熟悉的事物,直观形象地给出了生活中的平行线和相交线,激发了学生的学习兴趣。

  2、探究新知

  (1)教师动手操作:用剪刀剪开布片。在这个过程中握紧把手时,随着把手之间的角逐渐变小,剪刀刃之间的'角也相应变小,直到剪开布片。如果把剪刀的构造看成两条相交的直线,这就关系到两条相交直线所成的角的问题。

  (2)取两根木条a、b,将它们钉在一起,并把它们想像成两条直线,就得到一个相交线模型。如图1所示。在七年级上册中我们已经知道∠1与∠2的和等于180°,所以∠1与∠2互补,再仔细观察,这时的∠1与∠2有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角不仅互补,而且互为邻补角。

  设计意图说明:用现实生活中的例子引出两条直线相交所成的角的问题,自然而贴切。

  这样安排既可以复习七年级上册中互补的知识,又为学习本堂课的新知识做了铺垫。

  3、谈论交流

  (1)让学生讨论教科书中第4页的“讨论”。讨论时所给的表格可以逐步呈现,先结合两条直线相交的图形,找出其中所成的角,寻找各对角的位置关系。

  (2)讨论不同的角的位置关系,得出对顶角的定义,并提醒学生注意:①是两条直线相交而得;②有一个公共顶点;③没有公共边,三个条件缺一不可。

  (3)对顶角的大小有什么关系?讨论后得出对顶角的性质:对顶角相等。

  设计意图说明:

  教师放手让学生通过讨论解决问题,培养了学生的动手能力,提高了合作意识。

  教师要鼓励学生运用自己的语言有条理的表达自己的观点,并说明理由。

  “对顶角相等”这句话,学生很好理解,只是不知怎么阐述理由,教师可引导学生用“同角的补角相等”得出对顶角的性质。

  4、初步应用

  (1)教科书第5页的例题。

  (2)练习(补充)

  ①下列说法正确的是()

  A、有公共顶点的两个角是对顶角

  B、相等的两角是对顶角

  C、有公共顶点并且相等的角是对顶角

  D、两条直线相交成的四个角中,有公共顶点且没有公共边的两个角是对顶角

  ②已知∠1与∠2是对顶角,∠1与∠3互为补角,则∠2+∠3=?

  ③如图2:直线a、b、c两两相交,∠1=60°,∠2=∠4,∠3=,∠5=?

  设计意图说明:学生叙述,教师板书。补充练习的目的是为了使学生加深对知识的理解,参考答案:①D②180°③120°、90°

  5、小结提高

  可以采用师生问答的方式或先让学生归纳、补充,然后教师补充的方式进行,主要围绕下列问题:

  (1)本节课我们学了什么知识?

  (2)你有什么收获?

  设计意图说明:发挥学生的主体意识,培养学生的归纳能力。

  6、布置作业

  (1)必做题:教科书第9页习题5.1第1、2、7题。

  (2)选做题:

  设计意图说明:学生可以根据自己的不同水平选择不同的作业。

  ①如图3:直线AB与CD相交于点O,已知∠AOC+∠BOD=90°,则∠BOC=?

  ②已知两条直线相交而成的四个角,其中的一个角为50°,求其余三个角的度数。

  ③如图4:AB⊥CD于点O,直线EF过点O,若∠AOE=65°,求∠DOF的度数。

  选做题参考答案:①135°②130°,50°,130°③25°

  (3)备选题:

  ①如图5:OA⊥OC,OB⊥OD,∠1=55°,求∠2,∠3的度数。

  ②两条直线交于一点,有几对对顶角?

  三条直线交于一点,有几对对顶角?

  四条直线交于一点,有几对对顶角?

  X条直线交于一点,有几对对顶角?

  备选题参考答案:①35°,35°②21=2(对)32=6(对)

  43=2(对)x(x-1)=(x2-x)(对)

  五、设计思想

  本课设计旨在遵循从具体到抽象、从感性到理性的渐进认识规律,以启发探究式教学为主导,以学生熟悉的桥梁两端斜拉的平行线和侧面的相交线等实景引入课题,增加了学生的学习兴趣。

  教师应发扬教学民主,成为学生数学活动的组织者、引导者和合作者。通过多媒体教学辅助手段,引导学生在活动中观察,启发学生用比较直观的语言来叙述邻补角和对顶角的概念,充分体现“数学教学主要是数学活动的教学”这一教育精神。

  组织好小组合作学习,加强师生之间的互动,培养学生在独立思考问题的基础上,能够尊重与理解他人的意见,并培养与他人合作的能力。

  相交线教案 8

  教学建议

  1.知识结构

  2.重点和难点分析

  (1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握.对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认.教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们.辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角.

  (2)本节课的难点是对顶角性质的证明和书写格式.要证明两角相等,这对于刚学习推理证明的`学生来说并非易事.教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路.可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式.要特别注意使学生明确每一步推理的根据.

  3.教法建议

  (1)因为本节是由相交线的模型——用钉子固定的两根木条来引入的所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线.或用我们提供的课件来引入本节课,激发学生的学习兴趣.

  (2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质.老师拿出提前准备好的剪刀,在讲台上演示.老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义.

  (3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解.

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.理解对顶角和邻补角的概念,能在图形中辨认.

  2.掌握对顶角相等的性质和它的推证过程.

  3.会用对顶角的性质进行有关的推理和计算.

  (二)能力训练点

  1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

  2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力.

  (三)德育渗透点

  从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想.

  (四)美育渗透点

  通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美.

  二、学法引导

  1.教师教法:教具直观演示法启发引导、尝试研讨.

  2.学生学法:动手动脑、积极参与、认真研讨、学会概括.

  三、重点、难点及解决办法

  (一)重点

  (二)难点

  在较复杂的图形中准确辨认对顶角和邻补角.

  (三)疑点

  对顶角、邻补角的图形识别.

  (四)解决办法

  强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型.

  六、师生互动活动设计

  1.通过实例创设情境,引导学生进入课题.

  2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念.

  3.通过学生研讨、练习巩固完成性质的讲解.

  4.通过学生总结完成课堂小结.

  5.通过随堂练习,检测学生学习情况.

  相交线教案 9

  教学内容:

  课本第160 163页。主要内容为通过一个直线相交的课件的分析得到相交直线垂直的概念,并进一步探索垂足的概念和垂直的性质,同时探索了两条直线之间被第三条直线所截形成的角。

  第一课时

  4.7.1 垂线

  教学目标

  ▲ 知识与能力

  1、分析和探索垂直的概念,体会垂直的性质。

  2、理解过平面中一点有且只有一条垂线的性质。

  ▲ 过程与方法

  1、复习相关内容并引入新课。

  2、通过对相关课件的分析,引出两条直线垂直以及相关的概念。

  3、通过对例题图形的操作得到垂直的性质。

  ▲ 情感、态度与价值观

  通过对课件的分析,引导学生得出生垂直的定义,从而进一步培养学生探索精神和探索能力。

  教学重、难点及突破

  ▲ 重点

  两条直线的垂直概念以及垂直的性质。

  ▲ 难点

  能充分理解垂直的定义,并能应用于解决实际问题。

  ▲ 教学突破

  本节内容较为形象化,涉及到的图形较多,所以建议教师在教学的过程中能够充分的利用多媒体课件等教学的资源,能给喾学生较为形象的描述以帮助学生认识个中关系,从而使学生较深刻地理解本节内容。另外在本世中节建议教师对学生进行一些数学语言的训练,使学生能用数学语言描述图形的位置关系,从机时进一步培养学生用数学说话的习惯。

  教学准备

  ▲教师准备

  有关相交直线移动的课件

  ▲学生准备

  预习相交线的概念

  教学流程设计

  教师指导

  学生活动

  1.设问,引导学生回顾两直线相交的内容,并引入新课

  2.通过对两相交直线的旋转的动画分析,从直观上得到两直线垂直的概念.

  3.引导学生动手画得到垂 直的唯一性.

  4.布置适当练习,巩固所学

  1.认真地回顾两直线相交的知识,并随着教师的思路进入新课的学习.

  2.通过对动画效果的分析,能总结出两直线垂直的概念.

  3.通过亲手画图得到垂 直的唯一性.

  4.完成练习,对所学内容有进一步的.理解.

  一、导入新课

  教师活动

  学生活动

  1、导入:我们在以前学习了相交直线的知识,让我们一起回忆一下。

  2、总结学生的回答,并做出适当补充,引入新课:今天我们进一步讨论相交线问题。

  1、认真地回忆有关相交直线的内容,进一步提升认识,并在此基础上积极回答问题。

  2、在教师作总结的过程中积极思考,并随着教师的思路进入新课。

  二、对相交线的探索

  教师活动

  学生活动

  1、 用电脑展示两直交线中的一条沿着交点旋转形成垂直的动画效果,引导学生观察并讨论得到垂直的概念,向学生渗透从几何直观到抽象概念的思维过程。

  2、 引导学生完成课本第161页“试一试”的内容,鼓励讨论在直线外或直线上一点能引该直线的几条生垂线?在此过程中培养学生动手操作解决问题的能力。

  3、 让学生观察课本第161页图4.7.6,提问:点A与直线BC上各点连线中哪条最短

  4、 总结学生的回答,讲述点到直线距离概念,提醒学生注意垂线段与线的区别.

  5、 组织学生观察讨论课本第162页”做一做”的内容,在此过程中通过小海龟的运动渗透旋转思想.

  6、 练习:课本第162页练习1-3题.

  7、 教师小结本内容

  8、 布置作业:课本第166页习题4.7第1题

  1)认真积极讨论,基础上发现图形中两条相交直线形成的四个角是直角,从而认识两条直线垂直的概念,能初步理解从几何直观到抽象概念的过程。

  2)认真完成“试一试|”的内容并积极讨论,在此过程中发现在同一平面内,经过直线外或直线上一点有且只有一条垂线。

  3)认真观察,动手测量,积极讨论可发现点A与直线BC各点连线中AB最短。

  4)结合图形,认识点到直线距离的概念,掌握垂线与垂线段的区别。

  5)通过做出图形和讨论能发现两条相交直线垂直可以看作一条直线是另一条直线绕点旋转90度得到的,从而理解旋转思想。

  6)认真完成练习,巩固所学的知识。

  7)学生完成作业

  相交线教案 10

  【学习目标】

  了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.

  【学习重点】

  邻补角、对顶角的概念,对顶角性质与应用.

  【学习难点】

  理解对顶角相等的性质.

  【学习过程】

  一、学前准备

  各小组对七年级上学过的直线、射线、线段、角做总结.每人写一个总结小报告,

  二、探索思考

  探索一:完成课本P2页的探究,填在课本上.

  你能归纳出“邻补角”的定义吗? .

  “对顶角”的定义呢? .

  练习一:

  1.如图1所示,直线AB和CD相交于点O,OE是一条射线.

  (1)写出∠AOC的邻补角:____ _ ___ __;

  (2)写出∠COE的邻补角: __;

  (3)写出∠BOC的邻补角:____ _ ___ __;

  (4)写出∠BOD的`对顶角:____ _.

  2.如图所示,∠1与∠2是对顶角的是( )

  探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由.

  请归纳“对顶角的性质”: .

  练习二:

  1.如图,直线a,b相交,∠1=40°,则∠2=_______∠3=_______∠4=_______

  2.如图直线AB、CD、EF相交于点O,∠BOE的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______

  3.如图,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.

  三、当堂反馈

  1.若两个角互为邻补角,则它们的角平分线所夹的角为 度.

  2.如图所示,直线a,b,c两两相交,∠1=60°,∠2= ∠4,求∠3、∠5的度数.

  3.如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?

  4.探索规律:

  (1)两条直线交于一点,有 对对顶角; (2)三条直线交于一点,有 对对顶角;

  (3)四条直线交于一点,有 对对顶角;

  (4)n条直线交于一点,有 对对顶角.

【相交线教案】相关文章:

《相交线》教学反思06-04

相交线与平行线教学反思09-15

《相交线》教学反思13篇09-01

七年级数学相交线教学反思06-22

《线描画》教案08-06

《平行与相交》教学反思范文02-15

平行和相交教学反思02-23

点和线教案11-16

教案《平行线》09-19